pstan commited on
Commit
3d4d02f
·
verified ·
1 Parent(s): 7e61164

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +112 -0
README.md ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - berkeley-nest/Nectar
5
+ language:
6
+ - en
7
+ tags:
8
+ - reward model
9
+ - RLHF
10
+ - RLAIF
11
+ - ONNX
12
+ - DML
13
+ - DirectML
14
+ - ONNXRuntime
15
+ - mistral
16
+ - conversational
17
+ - custom_code
18
+ ---
19
+ # Starling-LM-7B-beta ONNX
20
+
21
+ ## Model Summary
22
+
23
+ This repository contains the ONNX-optimized version of [Starling-LM-7B-beta](https://huggingface.co/Nexusflow/Starling-LM-7B-beta), designed to accelerate inference using ONNX Runtime. These optimizations are specifically tailored for CPU and DirectML. DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning, offering GPU acceleration across a wide range of supported hardware and drivers, including those from AMD, Intel, NVIDIA, and Qualcomm.
24
+
25
+ ## Optimized Configurations
26
+
27
+ The following optimized configurations are available:
28
+
29
+ - **ONNX model for int4 DirectML:** Optimized for AMD, Intel, and NVIDIA GPUs on Windows, quantized to int4 using AWQ.
30
+ - **ONNX model for int4 CPU and Mobile:** ONNX model for CPU and mobile using int4 quantization via RTN. There are two versions uploaded to balance latency vs. accuracy. Acc=1 is targeted at improved accuracy, while Acc=4 is for improved performance. For mobile devices, we recommend using the model with acc-level-4.
31
+
32
+ ## Usage
33
+
34
+ ### Installation and Setup
35
+
36
+ To use the Starling-LM-7B-beta ONNX model on Windows with DirectML, follow these steps:
37
+
38
+ 1. **Create and activate a Conda environment:**
39
+ ```sh
40
+ conda create -n onnx python=3.10
41
+ conda activate onnx
42
+ ```
43
+
44
+ 2. **Install Git LFS:**
45
+ ```sh
46
+ winget install -e --id GitHub.GitLFS
47
+ ```
48
+
49
+ 3. **Install Hugging Face CLI:**
50
+ ```sh
51
+ pip install huggingface-hub[cli]
52
+ ```
53
+
54
+ 4. **Download the model:**
55
+ ```sh
56
+ huggingface-cli download EmbeddedLLM/Starling-LM-7b-beta-onnx --include="onnx/directml/*" --local-dir .\Starling-LM-7B-beta-onnx
57
+ ```
58
+
59
+ 5. **Install necessary Python packages:**
60
+ ```sh
61
+ pip install numpy
62
+ pip install onnxruntime-directml
63
+ pip install --pre onnxruntime-genai-directml
64
+ ```
65
+
66
+ 6. **Install Visual Studio 2015 runtime:**
67
+ ```sh
68
+ conda install conda-forge::vs2015_runtime
69
+ ```
70
+
71
+ 7. **Download the example script:**
72
+ ```sh
73
+ Invoke-WebRequest -Uri "https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/phi3-qa.py" -OutFile "phi3-qa.py"
74
+ ```
75
+
76
+ 8. **Run the example script:**
77
+ ```sh
78
+ python phi3-qa.py -m .\Starling-LM-7B-beta-onnx
79
+ ```
80
+
81
+ ### Hardware Requirements
82
+
83
+ **Minimum Configuration:**
84
+ - **Windows:** DirectX 12-capable GPU (AMD/Nvidia)
85
+ - **CPU:** x86_64 / ARM64
86
+
87
+ **Tested Configurations:**
88
+ - **GPU:** AMD Ryzen 8000 Series iGPU (DirectML)
89
+ - **CPU:** AMD Ryzen CPU
90
+
91
+ ## Model Description
92
+
93
+ - **Developed by:** The Nexusflow Team (Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu, Karthik Ganesan, Wei-Lin Chiang, Jian Zhang, and Jiantao Jiao)
94
+ - **Model type:** Language Model fine-tuned with RLHF / RLAIF
95
+ - **License:** Apache-2.0 license under the condition that the model is not used to compete with OpenAI
96
+ - **Finetuned from model:** [Openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) (based on [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1))
97
+
98
+ We introduce Starling-LM-7B-beta, an open large language model (LLM) trained by Reinforcement Learning from AI Feedback (RLAIF). Starling-LM-7B-beta is trained from [Openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) with our new reward model [Nexusflow/Starling-RM-34B](https://huggingface.co/Nexusflow/Starling-RM-34B) and policy optimization method [Fine-Tuning Language Models from Human Preferences (PPO)](https://arxiv.org/abs/1909.08593). Harnessing the power of the ranking dataset, [berkeley-nest/Nectar](https://huggingface.co/datasets/berkeley-nest/Nectar), the upgraded reward model, [Starling-RM-34B](https://huggingface.co/Nexusflow/Starling-RM-34B), and the new reward training and policy tuning pipeline, Starling-LM-7B-beta scores an improved 8.12 in MT Bench with GPT-4 as a judge.
99
+
100
+ ## License
101
+ The dataset, model and online demo is subject to the [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
102
+
103
+ ## Citation
104
+ ```
105
+ @misc{starling2023,
106
+ title = {Starling-7B: Improving LLM Helpfulness & Harmlessness with RLAIF},
107
+ url = {},
108
+ author = {Zhu, Banghua and Frick, Evan and Wu, Tianhao and Zhu, Hanlin and Ganesan, Karthik and Chiang, Wei-Lin and Zhang, Jian and Jiao, Jiantao},
109
+ month = {November},
110
+ year = {2023}
111
+ }
112
+ ```