surftown-1.0 / handler.py
VascoBartolo
fix import for the model-6
05d1a5d
raw
history blame
1.75 kB
from typing import Dict, List, Any
import torch
from transformers import LlavaNextVideoForConditionalGeneration, LlavaNextVideoProcessor
class EndpointHandler:
def __init__(self):
# Load the model and processor
self.model = LlavaNextVideoForConditionalGeneration.from_pretrained('EnariGmbH/surftown-1.0')
self.processor = LlavaNextVideoProcessor.from_pretrained('EnariGmbH/surftown-1.0')
# Ensure the model is in evaluation mode
self.model.eval()
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
Args:
data (Dict): Contains the input data including "clip" and "prompt".
Returns:
List[Dict[str, Any]]: The generated text from the model.
"""
# Extract inputs from the data dictionary
clip = data.get("clip")
prompt = data.get("prompt")
if clip is None or prompt is None:
return [{"error": "Missing 'clip' or 'prompt' in input data"}]
# Prepare the inputs for the model
inputs_video = self.processor(text=prompt, videos=clip, padding=True, return_tensors="pt").to(self.model.device)
# Generate output from the model
generate_kwargs = {"max_new_tokens": 512, "do_sample": True, "top_p": 0.9}
output = self.model.generate(**inputs_video, **generate_kwargs)
generated_text = self.processor.batch_decode(output, skip_special_tokens=True)
# Extract the relevant part of the assistant's answer
assistant_answer_start = generated_text[0].find("ASSISTANT:") + len("ASSISTANT:")
assistant_answer = generated_text[0][assistant_answer_start:].strip()
return [{"generated_text": assistant_answer}]