EquinoxElahin commited on
Commit
062352a
·
1 Parent(s): 62a1520

Push LunarLander v2 model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 249.03 +/- 38.42
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb166ab1820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb166ab18b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb166ab1940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb166ab19d0>", "_build": "<function ActorCriticPolicy._build at 0x7fb166ab1a60>", "forward": "<function ActorCriticPolicy.forward at 0x7fb166ab1af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb166ab1b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb166ab1c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb166ab1ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb166ab1d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb166ab1dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb166ab1e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb166aac990>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674485232134731938, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZGubopUAy6GEjgOnMaTLXRAM274nkDugAAgD8AAIA/mi8iPVLYrbkyC4G75bl3OOUygLvmNRI6AACAPwAAgD8m8d091KGRPkgK970b2pm+KlKlui8bvz0AAAAAAAAAAHMG7j2P1kW6jvOmOglc2rZv0N26xSDDuQAAgD8AAIA/5oxkPVJY3Ln92G65sUMWtNOAHjsKaYo4AACAPwAAgD8zkZy97MnFuSUn3LpVIde1lyzjuiDLAjoAAIA/AACAP/OPpj2ksEi5kVjAOhfX7zVggTM78GriuQAAgD8AAIA/pna4vekKebyVxWa9LqsvvhWaGj39ljU+AACAPwAAgD8AnP+7w8Fzup/yozi6UpwzBbdUumwcwLcAAIA/AACAPwBBJz0fJcO57eCEOVIq6DR0rzU7OvGauAAAgD8AAIA/QGmXvSlQQrreWY85CsHqNCZGwToOYqS4AACAPwAAgD+z7ao9XH8Cuv9rKziru4kyPG2Gu68GR7cAAIA/AACAP7Opp72ug5C6oIr+O/3dojeqDQY77DOPNgAAgD8AAIA/Jo7bvfacD7oNGds1gJJXMB1OvzplOe20AACAPwAAgD+AIXY9j1Jgulb9kzqAPB02T9VuOyrLqbkAAIA/AACAP5q/6L3skfe5XWCSujqmFzdnXKS7f6WkOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYygn2lVCZkCUhpRSlIwBbJRN6AOMAXSUR0CjieH+6y0KdX2UKGgGaAloD0MI+OC1Sxv/ZUCUhpRSlGgVTegDaBZHQKONxTH80k51fZQoaAZoCWgPQwh6xr5kY5VkQJSGlFKUaBVN6ANoFkdAo44et0V8C3V9lChoBmgJaA9DCCGQSxz5SGVAlIaUUpRoFU3oA2gWR0CjjnTu4PPLdX2UKGgGaAloD0MInWNA9nqvY0CUhpRSlGgVTegDaBZHQKORthAGB4F1fZQoaAZoCWgPQwguck9X95FiQJSGlFKUaBVN6ANoFkdAo5NCef7Jn3V9lChoBmgJaA9DCIB/SpUoqW1AlIaUUpRoFU2NAWgWR0CjlbakRBeHdX2UKGgGaAloD0MIlN43vvaEXUCUhpRSlGgVTegDaBZHQKOb56sySFJ1fZQoaAZoCWgPQwiyZI7l3RNiQJSGlFKUaBVN6ANoFkdAo5w6QaJhv3V9lChoBmgJaA9DCLPROT9FP2BAlIaUUpRoFU3oA2gWR0CjnEMW43FUdX2UKGgGaAloD0MIHeOKiyOcYUCUhpRSlGgVTegDaBZHQKOetjDsMRZ1fZQoaAZoCWgPQwjWjAxyF9diQJSGlFKUaBVN6ANoFkdAo6AHGwRoRXV9lChoBmgJaA9DCFRW0/XEgmhAlIaUUpRoFU3oA2gWR0Cjqwn+IdlvdX2UKGgGaAloD0MISYEFMGUYY0CUhpRSlGgVTegDaBZHQKOsX8zhxYJ1fZQoaAZoCWgPQwi139qJksllQJSGlFKUaBVN6ANoFkdAo620L+glGHV9lChoBmgJaA9DCHeE04IXW1xAlIaUUpRoFU3oA2gWR0CjsL5yMkyDdX2UKGgGaAloD0MI8L+V7NgfX0CUhpRSlGgVTegDaBZHQKOxq+pwS8J1fZQoaAZoCWgPQwh3S3LALmFvQJSGlFKUaBVNBQJoFkdAo7OYfwI+n3V9lChoBmgJaA9DCIoipG4nA3FAlIaUUpRoFU3VA2gWR0CjtFbLt/nXdX2UKGgGaAloD0MINZawNkYvYkCUhpRSlGgVTegDaBZHQKO1IuzQeFN1fZQoaAZoCWgPQwgouFhRg25mQJSGlFKUaBVN6ANoFkdAo7Vgrxy4nXV9lChoBmgJaA9DCNNOzeUGFGJAlIaUUpRoFU3oA2gWR0Cjt+bwKBuodX2UKGgGaAloD0MI6bga2RWKYECUhpRSlGgVTegDaBZHQKO5GT4+KTB1fZQoaAZoCWgPQwhnuWx0zvM1QJSGlFKUaBVL52gWR0CjugrcCYCydX2UKGgGaAloD0MIWHGqtTD8YECUhpRSlGgVTegDaBZHQKO7Arupjtp1fZQoaAZoCWgPQwgfhetROK9hQJSGlFKUaBVN6ANoFkdAo8AgDaGpM3V9lChoBmgJaA9DCLyuX7AbsWdAlIaUUpRoFU3oA2gWR0CjwCgrH2h7dX2UKGgGaAloD0MIqTP3kHCgY0CUhpRSlGgVTegDaBZHQKPCoEVWS2Z1fZQoaAZoCWgPQwgFjC5vDrtlQJSGlFKUaBVN6ANoFkdAo8PwWtU4rHV9lChoBmgJaA9DCK0Tl+OVCmZAlIaUUpRoFU3oA2gWR0CjxTZJ9RaYdX2UKGgGaAloD0MIAW4WL5bDZUCUhpRSlGgVTegDaBZHQKPQGD8tPHl1fZQoaAZoCWgPQwj9Ma1NYx9pQJSGlFKUaBVN6ANoFkdAo9GRLGrCFnV9lChoBmgJaA9DCLGlR1M9i29AlIaUUpRoFU1VAWgWR0Cj0vrCemNzdX2UKGgGaAloD0MIQl4PJkVzZECUhpRSlGgVTegDaBZHQKPUgnF5v991fZQoaAZoCWgPQwg/OJ861nZiQJSGlFKUaBVN6ANoFkdAo9Vf/Pw/gXV9lChoBmgJaA9DCI+pu7KLKmZAlIaUUpRoFU3oA2gWR0Cj1yPcBU70dX2UKGgGaAloD0MI7IfYYOERZUCUhpRSlGgVTegDaBZHQKPYybRWtEJ1fZQoaAZoCWgPQwiJJ7uZ0V9jQJSGlFKUaBVN6ANoFkdAo9kNb9qDb3V9lChoBmgJaA9DCAyUFFgApmRAlIaUUpRoFU3oA2gWR0Cj2/L3j+72dX2UKGgGaAloD0MIaHbdWxEKZ0CUhpRSlGgVTegDaBZHQKPdW2606YF1fZQoaAZoCWgPQwjO/6uOHO9oQJSGlFKUaBVN6ANoFkdAo957PjXFtXV9lChoBmgJaA9DCOdUMgBUNFNAlIaUUpRoFU3oA2gWR0Cj36jAaef7dX2UKGgGaAloD0MIceZXcwCkYkCUhpRSlGgVTegDaBZHQKPl0yi22G91fZQoaAZoCWgPQwgTYi6pWmpyQJSGlFKUaBVNNwFoFkdAo+hyPQv6CXV9lChoBmgJaA9DCLyzdtuFfF9AlIaUUpRoFU3oA2gWR0Cj6Mc5S3spdX2UKGgGaAloD0MILgJjfYM8ZECUhpRSlGgVTegDaBZHQKPqRIMjNY91fZQoaAZoCWgPQwikOEcdHYlkQJSGlFKUaBVN6ANoFkdAo+uyU1Q663V9lChoBmgJaA9DCHDSNCiadWBAlIaUUpRoFU3oA2gWR0Cj9uLilzltdX2UKGgGaAloD0MICJChYwffYUCUhpRSlGgVTegDaBZHQKP4elsxfv51fZQoaAZoCWgPQwieYP917ohlQJSGlFKUaBVN6ANoFkdAo/n2938n/nV9lChoBmgJaA9DCOZ2L/fJGT9AlIaUUpRoFUvdaBZHQKP7vYaHbh51fZQoaAZoCWgPQwh0mgXaHWFnQJSGlFKUaBVN6ANoFkdAo/u9Cqp97XV9lChoBmgJaA9DCN1AgXdyCWFAlIaUUpRoFU3oA2gWR0Cj/LQ+2VmjdX2UKGgGaAloD0MITS7GwLq5Y0CUhpRSlGgVTegDaBZHQKP+hoBaLXN1fZQoaAZoCWgPQwiNYU7QptJiQJSGlFKUaBVN6ANoFkdApAAhTl1bJXV9lChoBmgJaA9DCAN3oE553GBAlIaUUpRoFU3oA2gWR0CkAGr3bmEHdX2UKGgGaAloD0MIWrdB7TfUZkCUhpRSlGgVTegDaBZHQKQDexJul411fZQoaAZoCWgPQwihLHx9rUJhQJSGlFKUaBVN6ANoFkdApAT+QZGayHV9lChoBmgJaA9DCEFhUKbRr2RAlIaUUpRoFU3oA2gWR0CkB1BdMTN/dX2UKGgGaAloD0MIePF+3H7BZkCUhpRSlGgVTegDaBZHQKQNgxkd3jd1fZQoaAZoCWgPQwhfe2ZJgApOQJSGlFKUaBVL7GgWR0CkDtsIE8q4dX2UKGgGaAloD0MINSVZh6NOY0CUhpRSlGgVTegDaBZHQKQQElUp/gB1fZQoaAZoCWgPQwg4pFGBE1VnQJSGlFKUaBVN6ANoFkdApBBoe5nUUnV9lChoBmgJaA9DCIkJavgW0GVAlIaUUpRoFU3oA2gWR0CkEdjpkf9xdX2UKGgGaAloD0MI+BxYjhAbZkCUhpRSlGgVTegDaBZHQKQeiU1Q66t1fZQoaAZoCWgPQwj3sYLfBrRnQJSGlFKUaBVN6ANoFkdApCA0rd30PHV9lChoBmgJaA9DCGyTisba6WNAlIaUUpRoFU3oA2gWR0CkIbrXDm8vdX2UKGgGaAloD0MI63JKQMyMbUCUhpRSlGgVS/1oFkdApCMAI6bONnV9lChoBmgJaA9DCDVB1H2A1WNAlIaUUpRoFU3oA2gWR0CkI3V+qioLdX2UKGgGaAloD0MISyL7IMv0ZkCUhpRSlGgVTegDaBZHQKQjdNet0V91fZQoaAZoCWgPQwhMUMO3sIBmQJSGlFKUaBVN6ANoFkdApCRcYGdI5HV9lChoBmgJaA9DCAStwJBVp2NAlIaUUpRoFU3oA2gWR0CkJi+/5+H8dX2UKGgGaAloD0MIsJC5MqgNZ0CUhpRSlGgVTegDaBZHQKQnlVpblil1fZQoaAZoCWgPQwhbeF4qtnpnQJSGlFKUaBVN6ANoFkdApCfVweeWfXV9lChoBmgJaA9DCJ58emzL2WNAlIaUUpRoFU3oA2gWR0CkKoX668QJdX2UKGgGaAloD0MIdR4V//ewZECUhpRSlGgVTegDaBZHQKQsDXeWOZN1fZQoaAZoCWgPQwgNxLKZQ7ljQJSGlFKUaBVN6ANoFkdApDVxyp71I3V9lChoBmgJaA9DCI5aYfpeaV9AlIaUUpRoFU3oA2gWR0CkNvDWbwz+dX2UKGgGaAloD0MIRSqMLQTQZECUhpRSlGgVTegDaBZHQKQ4LgOz6ad1fZQoaAZoCWgPQwgtBg/TvihkQJSGlFKUaBVN6ANoFkdApDiBmTTvzHV9lChoBmgJaA9DCFQB9zx/XWNAlIaUUpRoFU3oA2gWR0CkPX3Kji4sdX2UKGgGaAloD0MIgGPPnsstZkCUhpRSlGgVTegDaBZHQKRI9qpLmIV1fZQoaAZoCWgPQwhd+pekMqFOQJSGlFKUaBVL2WgWR0CkSRZJ9RaYdX2UKGgGaAloD0MIt39lpUk4ZkCUhpRSlGgVTegDaBZHQKRKjw3HaOB1fZQoaAZoCWgPQwiMhSFy+hJwQJSGlFKUaBVNfgJoFkdApEs+p84Pw3V9lChoBmgJaA9DCKlr7X0qCmNAlIaUUpRoFU3oA2gWR0CkS+bF0gbIdX2UKGgGaAloD0MIO8eA7HWFZkCUhpRSlGgVTegDaBZHQKRMU8lHBk91fZQoaAZoCWgPQwi0O6QYoH5iQJSGlFKUaBVN6ANoFkdApExSpeeFtnV9lChoBmgJaA9DCLFOle8Z1GJAlIaUUpRoFU3oA2gWR0CkTSonSfDldX2UKGgGaAloD0MIBvTCnQtZQECUhpRSlGgVS/loFkdApE4vuTibUnV9lChoBmgJaA9DCCDT2jS2k2ZAlIaUUpRoFU3oA2gWR0CkTsGwA2hqdX2UKGgGaAloD0MIC7d8JCVrR0CUhpRSlGgVTQMBaBZHQKRP0ATZg5R1fZQoaAZoCWgPQwgMIef9/wdmQJSGlFKUaBVN6ANoFkdApFAXJcPe6HV9lChoBmgJaA9DCHpQUIpWUF9AlIaUUpRoFU3oA2gWR0CkUE4x+KCQdX2UKGgGaAloD0MI9dVVgVqTZECUhpRSlGgVTegDaBZHQKRS36po9LZ1fZQoaAZoCWgPQwh7Ss6JPR1TQJSGlFKUaBVL2GgWR0CkU3dAPd2xdX2UKGgGaAloD0MI51Hxf0fwQkCUhpRSlGgVS+RoFkdApFqci2UjcHV9lChoBmgJaA9DCFVOe0rOoGZAlIaUUpRoFU3oA2gWR0CkXh9+ocaPdX2UKGgGaAloD0MIRtJu9LFgZECUhpRSlGgVTegDaBZHQKRfsNPxhDx1fZQoaAZoCWgPQwgGZRpNrnNlQJSGlFKUaBVN6ANoFkdApGE+ZTho/XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f6007feb555c0d8cd61374000b567415b8062386315fcaf846ecc655e5a7e14
3
+ size 147416
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb166ab1820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb166ab18b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb166ab1940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb166ab19d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb166ab1a60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb166ab1af0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb166ab1b80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb166ab1c10>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb166ab1ca0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb166ab1d30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb166ab1dc0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb166ab1e50>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fb166aac990>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1674485232134731938,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZGubopUAy6GEjgOnMaTLXRAM274nkDugAAgD8AAIA/mi8iPVLYrbkyC4G75bl3OOUygLvmNRI6AACAPwAAgD8m8d091KGRPkgK970b2pm+KlKlui8bvz0AAAAAAAAAAHMG7j2P1kW6jvOmOglc2rZv0N26xSDDuQAAgD8AAIA/5oxkPVJY3Ln92G65sUMWtNOAHjsKaYo4AACAPwAAgD8zkZy97MnFuSUn3LpVIde1lyzjuiDLAjoAAIA/AACAP/OPpj2ksEi5kVjAOhfX7zVggTM78GriuQAAgD8AAIA/pna4vekKebyVxWa9LqsvvhWaGj39ljU+AACAPwAAgD8AnP+7w8Fzup/yozi6UpwzBbdUumwcwLcAAIA/AACAPwBBJz0fJcO57eCEOVIq6DR0rzU7OvGauAAAgD8AAIA/QGmXvSlQQrreWY85CsHqNCZGwToOYqS4AACAPwAAgD+z7ao9XH8Cuv9rKziru4kyPG2Gu68GR7cAAIA/AACAP7Opp72ug5C6oIr+O/3dojeqDQY77DOPNgAAgD8AAIA/Jo7bvfacD7oNGds1gJJXMB1OvzplOe20AACAPwAAgD+AIXY9j1Jgulb9kzqAPB02T9VuOyrLqbkAAIA/AACAP5q/6L3skfe5XWCSujqmFzdnXKS7f6WkOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYygn2lVCZkCUhpRSlIwBbJRN6AOMAXSUR0CjieH+6y0KdX2UKGgGaAloD0MI+OC1Sxv/ZUCUhpRSlGgVTegDaBZHQKONxTH80k51fZQoaAZoCWgPQwh6xr5kY5VkQJSGlFKUaBVN6ANoFkdAo44et0V8C3V9lChoBmgJaA9DCCGQSxz5SGVAlIaUUpRoFU3oA2gWR0CjjnTu4PPLdX2UKGgGaAloD0MInWNA9nqvY0CUhpRSlGgVTegDaBZHQKORthAGB4F1fZQoaAZoCWgPQwguck9X95FiQJSGlFKUaBVN6ANoFkdAo5NCef7Jn3V9lChoBmgJaA9DCIB/SpUoqW1AlIaUUpRoFU2NAWgWR0CjlbakRBeHdX2UKGgGaAloD0MIlN43vvaEXUCUhpRSlGgVTegDaBZHQKOb56sySFJ1fZQoaAZoCWgPQwiyZI7l3RNiQJSGlFKUaBVN6ANoFkdAo5w6QaJhv3V9lChoBmgJaA9DCLPROT9FP2BAlIaUUpRoFU3oA2gWR0CjnEMW43FUdX2UKGgGaAloD0MIHeOKiyOcYUCUhpRSlGgVTegDaBZHQKOetjDsMRZ1fZQoaAZoCWgPQwjWjAxyF9diQJSGlFKUaBVN6ANoFkdAo6AHGwRoRXV9lChoBmgJaA9DCFRW0/XEgmhAlIaUUpRoFU3oA2gWR0Cjqwn+IdlvdX2UKGgGaAloD0MISYEFMGUYY0CUhpRSlGgVTegDaBZHQKOsX8zhxYJ1fZQoaAZoCWgPQwi139qJksllQJSGlFKUaBVN6ANoFkdAo620L+glGHV9lChoBmgJaA9DCHeE04IXW1xAlIaUUpRoFU3oA2gWR0CjsL5yMkyDdX2UKGgGaAloD0MI8L+V7NgfX0CUhpRSlGgVTegDaBZHQKOxq+pwS8J1fZQoaAZoCWgPQwh3S3LALmFvQJSGlFKUaBVNBQJoFkdAo7OYfwI+n3V9lChoBmgJaA9DCIoipG4nA3FAlIaUUpRoFU3VA2gWR0CjtFbLt/nXdX2UKGgGaAloD0MINZawNkYvYkCUhpRSlGgVTegDaBZHQKO1IuzQeFN1fZQoaAZoCWgPQwgouFhRg25mQJSGlFKUaBVN6ANoFkdAo7Vgrxy4nXV9lChoBmgJaA9DCNNOzeUGFGJAlIaUUpRoFU3oA2gWR0Cjt+bwKBuodX2UKGgGaAloD0MI6bga2RWKYECUhpRSlGgVTegDaBZHQKO5GT4+KTB1fZQoaAZoCWgPQwhnuWx0zvM1QJSGlFKUaBVL52gWR0CjugrcCYCydX2UKGgGaAloD0MIWHGqtTD8YECUhpRSlGgVTegDaBZHQKO7Arupjtp1fZQoaAZoCWgPQwgfhetROK9hQJSGlFKUaBVN6ANoFkdAo8AgDaGpM3V9lChoBmgJaA9DCLyuX7AbsWdAlIaUUpRoFU3oA2gWR0CjwCgrH2h7dX2UKGgGaAloD0MIqTP3kHCgY0CUhpRSlGgVTegDaBZHQKPCoEVWS2Z1fZQoaAZoCWgPQwgFjC5vDrtlQJSGlFKUaBVN6ANoFkdAo8PwWtU4rHV9lChoBmgJaA9DCK0Tl+OVCmZAlIaUUpRoFU3oA2gWR0CjxTZJ9RaYdX2UKGgGaAloD0MIAW4WL5bDZUCUhpRSlGgVTegDaBZHQKPQGD8tPHl1fZQoaAZoCWgPQwj9Ma1NYx9pQJSGlFKUaBVN6ANoFkdAo9GRLGrCFnV9lChoBmgJaA9DCLGlR1M9i29AlIaUUpRoFU1VAWgWR0Cj0vrCemNzdX2UKGgGaAloD0MIQl4PJkVzZECUhpRSlGgVTegDaBZHQKPUgnF5v991fZQoaAZoCWgPQwg/OJ861nZiQJSGlFKUaBVN6ANoFkdAo9Vf/Pw/gXV9lChoBmgJaA9DCI+pu7KLKmZAlIaUUpRoFU3oA2gWR0Cj1yPcBU70dX2UKGgGaAloD0MI7IfYYOERZUCUhpRSlGgVTegDaBZHQKPYybRWtEJ1fZQoaAZoCWgPQwiJJ7uZ0V9jQJSGlFKUaBVN6ANoFkdAo9kNb9qDb3V9lChoBmgJaA9DCAyUFFgApmRAlIaUUpRoFU3oA2gWR0Cj2/L3j+72dX2UKGgGaAloD0MIaHbdWxEKZ0CUhpRSlGgVTegDaBZHQKPdW2606YF1fZQoaAZoCWgPQwjO/6uOHO9oQJSGlFKUaBVN6ANoFkdAo957PjXFtXV9lChoBmgJaA9DCOdUMgBUNFNAlIaUUpRoFU3oA2gWR0Cj36jAaef7dX2UKGgGaAloD0MIceZXcwCkYkCUhpRSlGgVTegDaBZHQKPl0yi22G91fZQoaAZoCWgPQwgTYi6pWmpyQJSGlFKUaBVNNwFoFkdAo+hyPQv6CXV9lChoBmgJaA9DCLyzdtuFfF9AlIaUUpRoFU3oA2gWR0Cj6Mc5S3spdX2UKGgGaAloD0MILgJjfYM8ZECUhpRSlGgVTegDaBZHQKPqRIMjNY91fZQoaAZoCWgPQwikOEcdHYlkQJSGlFKUaBVN6ANoFkdAo+uyU1Q663V9lChoBmgJaA9DCHDSNCiadWBAlIaUUpRoFU3oA2gWR0Cj9uLilzltdX2UKGgGaAloD0MICJChYwffYUCUhpRSlGgVTegDaBZHQKP4elsxfv51fZQoaAZoCWgPQwieYP917ohlQJSGlFKUaBVN6ANoFkdAo/n2938n/nV9lChoBmgJaA9DCOZ2L/fJGT9AlIaUUpRoFUvdaBZHQKP7vYaHbh51fZQoaAZoCWgPQwh0mgXaHWFnQJSGlFKUaBVN6ANoFkdAo/u9Cqp97XV9lChoBmgJaA9DCN1AgXdyCWFAlIaUUpRoFU3oA2gWR0Cj/LQ+2VmjdX2UKGgGaAloD0MITS7GwLq5Y0CUhpRSlGgVTegDaBZHQKP+hoBaLXN1fZQoaAZoCWgPQwiNYU7QptJiQJSGlFKUaBVN6ANoFkdApAAhTl1bJXV9lChoBmgJaA9DCAN3oE553GBAlIaUUpRoFU3oA2gWR0CkAGr3bmEHdX2UKGgGaAloD0MIWrdB7TfUZkCUhpRSlGgVTegDaBZHQKQDexJul411fZQoaAZoCWgPQwihLHx9rUJhQJSGlFKUaBVN6ANoFkdApAT+QZGayHV9lChoBmgJaA9DCEFhUKbRr2RAlIaUUpRoFU3oA2gWR0CkB1BdMTN/dX2UKGgGaAloD0MIePF+3H7BZkCUhpRSlGgVTegDaBZHQKQNgxkd3jd1fZQoaAZoCWgPQwhfe2ZJgApOQJSGlFKUaBVL7GgWR0CkDtsIE8q4dX2UKGgGaAloD0MINSVZh6NOY0CUhpRSlGgVTegDaBZHQKQQElUp/gB1fZQoaAZoCWgPQwg4pFGBE1VnQJSGlFKUaBVN6ANoFkdApBBoe5nUUnV9lChoBmgJaA9DCIkJavgW0GVAlIaUUpRoFU3oA2gWR0CkEdjpkf9xdX2UKGgGaAloD0MI+BxYjhAbZkCUhpRSlGgVTegDaBZHQKQeiU1Q66t1fZQoaAZoCWgPQwj3sYLfBrRnQJSGlFKUaBVN6ANoFkdApCA0rd30PHV9lChoBmgJaA9DCGyTisba6WNAlIaUUpRoFU3oA2gWR0CkIbrXDm8vdX2UKGgGaAloD0MI63JKQMyMbUCUhpRSlGgVS/1oFkdApCMAI6bONnV9lChoBmgJaA9DCDVB1H2A1WNAlIaUUpRoFU3oA2gWR0CkI3V+qioLdX2UKGgGaAloD0MISyL7IMv0ZkCUhpRSlGgVTegDaBZHQKQjdNet0V91fZQoaAZoCWgPQwhMUMO3sIBmQJSGlFKUaBVN6ANoFkdApCRcYGdI5HV9lChoBmgJaA9DCAStwJBVp2NAlIaUUpRoFU3oA2gWR0CkJi+/5+H8dX2UKGgGaAloD0MIsJC5MqgNZ0CUhpRSlGgVTegDaBZHQKQnlVpblil1fZQoaAZoCWgPQwhbeF4qtnpnQJSGlFKUaBVN6ANoFkdApCfVweeWfXV9lChoBmgJaA9DCJ58emzL2WNAlIaUUpRoFU3oA2gWR0CkKoX668QJdX2UKGgGaAloD0MIdR4V//ewZECUhpRSlGgVTegDaBZHQKQsDXeWOZN1fZQoaAZoCWgPQwgNxLKZQ7ljQJSGlFKUaBVN6ANoFkdApDVxyp71I3V9lChoBmgJaA9DCI5aYfpeaV9AlIaUUpRoFU3oA2gWR0CkNvDWbwz+dX2UKGgGaAloD0MIRSqMLQTQZECUhpRSlGgVTegDaBZHQKQ4LgOz6ad1fZQoaAZoCWgPQwgtBg/TvihkQJSGlFKUaBVN6ANoFkdApDiBmTTvzHV9lChoBmgJaA9DCFQB9zx/XWNAlIaUUpRoFU3oA2gWR0CkPX3Kji4sdX2UKGgGaAloD0MIgGPPnsstZkCUhpRSlGgVTegDaBZHQKRI9qpLmIV1fZQoaAZoCWgPQwhd+pekMqFOQJSGlFKUaBVL2WgWR0CkSRZJ9RaYdX2UKGgGaAloD0MIt39lpUk4ZkCUhpRSlGgVTegDaBZHQKRKjw3HaOB1fZQoaAZoCWgPQwiMhSFy+hJwQJSGlFKUaBVNfgJoFkdApEs+p84Pw3V9lChoBmgJaA9DCKlr7X0qCmNAlIaUUpRoFU3oA2gWR0CkS+bF0gbIdX2UKGgGaAloD0MIO8eA7HWFZkCUhpRSlGgVTegDaBZHQKRMU8lHBk91fZQoaAZoCWgPQwi0O6QYoH5iQJSGlFKUaBVN6ANoFkdApExSpeeFtnV9lChoBmgJaA9DCLFOle8Z1GJAlIaUUpRoFU3oA2gWR0CkTSonSfDldX2UKGgGaAloD0MIBvTCnQtZQECUhpRSlGgVS/loFkdApE4vuTibUnV9lChoBmgJaA9DCCDT2jS2k2ZAlIaUUpRoFU3oA2gWR0CkTsGwA2hqdX2UKGgGaAloD0MIC7d8JCVrR0CUhpRSlGgVTQMBaBZHQKRP0ATZg5R1fZQoaAZoCWgPQwgMIef9/wdmQJSGlFKUaBVN6ANoFkdApFAXJcPe6HV9lChoBmgJaA9DCHpQUIpWUF9AlIaUUpRoFU3oA2gWR0CkUE4x+KCQdX2UKGgGaAloD0MI9dVVgVqTZECUhpRSlGgVTegDaBZHQKRS36po9LZ1fZQoaAZoCWgPQwh7Ss6JPR1TQJSGlFKUaBVL2GgWR0CkU3dAPd2xdX2UKGgGaAloD0MI51Hxf0fwQkCUhpRSlGgVS+RoFkdApFqci2UjcHV9lChoBmgJaA9DCFVOe0rOoGZAlIaUUpRoFU3oA2gWR0CkXh9+ocaPdX2UKGgGaAloD0MIRtJu9LFgZECUhpRSlGgVTegDaBZHQKRfsNPxhDx1fZQoaAZoCWgPQwgGZRpNrnNlQJSGlFKUaBVN6ANoFkdApGE+ZTho/XVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b33387845d8271c25163affc996ed4191538cc1f8c9dc8fcaecfa400e8eeced
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5573b962a581efe176266065a865656352b01a3a5b5ade9032f49428b232e9c1
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (239 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 249.02622528017164, "std_reward": 38.42216417764671, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-23T15:26:37.984756"}