File size: 1,908 Bytes
39589bf
 
 
 
 
 
 
 
 
 
 
 
 
f012722
39589bf
 
 
 
 
 
 
 
 
 
f012722
39589bf
 
 
 
 
f012722
39589bf
 
 
f012722
 
39589bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f012722
39589bf
 
 
 
 
 
f012722
39589bf
 
 
 
 
 
f012722
 
 
 
39589bf
 
 
 
 
 
f012722
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
language:
- ac
license: apache-2.0
base_model: openai/whisper-small
tags:
- whisper-event
- generated_from_trainer
datasets:
- tericlabs
metrics:
- wer
model-index:
- name: Whisper base acholi
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Sunbird
      type: tericlabs
    metrics:
    - name: Wer
      type: wer
      value: 122.26379794200186
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper base acholi

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Sunbird dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8895
- Wer: 122.2638

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer      |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.2321        | 3.32  | 1000 | 2.9610          | 140.3181 |
| 2.5056        | 6.64  | 2000 | 2.7358          | 116.9317 |
| 2.0671        | 9.97  | 3000 | 2.7957          | 144.9953 |
| 1.7382        | 13.29 | 4000 | 2.8895          | 122.2638 |


### Framework versions

- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2