|
|
|
|
|
|
|
|
|
import logging |
|
import math |
|
import os |
|
from collections import OrderedDict |
|
import copy |
|
import math |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss, MSELoss |
|
import torch.nn.functional as F |
|
from torch.optim import Optimizer |
|
from torch.optim.lr_scheduler import LambdaLR |
|
from torch.nn.parameter import Parameter |
|
|
|
import loralib as lora |
|
|
|
|
|
def gelu(x): |
|
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) |
|
|
|
|
|
def gelu_fast(x): |
|
return 0.5 * x * (1.0 + torch.tanh(x * 0.7978845608 * (1.0 + 0.044715 * x * x))) |
|
|
|
|
|
def gelu_new(x): |
|
""" Implementation of the gelu activation function currently in Google Bert repo (identical to OpenAI GPT). |
|
Also see https://arxiv.org/abs/1606.08415 |
|
""" |
|
return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0)))) |
|
|
|
|
|
def swish(x): |
|
return x * torch.sigmoid(x) |
|
|
|
|
|
def _gelu_python(x): |
|
""" Original Implementation of the gelu activation function in Google Bert repo when initially created. |
|
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): |
|
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) |
|
This is now written in C in torch.nn.functional |
|
Also see https://arxiv.org/abs/1606.08415 |
|
""" |
|
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) |
|
|
|
|
|
class LayerNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-12): |
|
"""Construct a layernorm module in the TF style (epsilon inside the square root).""" |
|
super(LayerNorm, self).__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.bias = nn.Parameter(torch.zeros(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, x): |
|
u = x.mean(-1, keepdim=True) |
|
s = (x - u).pow(2).mean(-1, keepdim=True) |
|
x = (x - u) / torch.sqrt(s + self.variance_epsilon) |
|
return self.weight * x + self.bias |
|
|
|
|
|
class Conv1D(nn.Module): |
|
def __init__(self, nf, nx): |
|
super(Conv1D, self).__init__() |
|
self.nf = nf |
|
w = torch.empty(nx, nf) |
|
nn.init.normal_(w, std=0.02) |
|
self.weight = Parameter(w) |
|
self.bias = Parameter(torch.zeros(nf)) |
|
|
|
def forward(self, x): |
|
size_out = x.size()[:-1] + (self.nf,) |
|
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) |
|
x = x.view(*size_out) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, nx, n_ctx, config, scale=False): |
|
super(Attention, self).__init__() |
|
n_state = nx |
|
|
|
|
|
assert n_state % config.n_head == 0 |
|
self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx)) |
|
self.n_head = config.n_head |
|
self.split_size = n_state |
|
self.scale = scale |
|
self.c_attn = Conv1D(n_state * 3, nx) |
|
self.c_attn = lora.MergedLinear( |
|
nx, n_state * 3, |
|
r=config.lora_attn_dim, |
|
lora_alpha=config.lora_attn_alpha, |
|
lora_dropout=config.lora_dropout, |
|
enable_lora=[True, False, True], |
|
fan_in_fan_out=True, |
|
merge_weights=False |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(f"scaling = {config.lora_attn_alpha / config.lora_attn_dim}") |
|
self.c_proj = Conv1D(n_state, nx) |
|
|
|
self.config = config |
|
|
|
def _attn(self, q, k, v, len_kv=None): |
|
w = torch.matmul(q, k) |
|
if self.scale: |
|
w = w / math.sqrt(v.size(-1)) |
|
nd, ns = w.size(-2), w.size(-1) |
|
b = self.bias[:, :, ns-nd:ns, :ns] |
|
w = w * b - 1e10 * (1 - b) |
|
|
|
|
|
|
|
|
|
|
|
if len_kv is not None: |
|
_len = torch.arange(k.size(-1), device=k.device) |
|
_input_msk = _len[None, :] >= (len_kv)[:, None] |
|
w = w.masked_fill(_input_msk.unsqueeze(1).unsqueeze(2), -1.0e10) |
|
|
|
w = nn.Softmax(dim=-1)(w) |
|
return torch.matmul(w, v) |
|
|
|
def merge_heads(self, x): |
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) |
|
return x.view(*new_x_shape) |
|
|
|
def split_heads(self, x, k=False): |
|
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) |
|
x = x.view(*new_x_shape) |
|
if k: |
|
return x.permute(0, 2, 3, 1).contiguous() |
|
else: |
|
return x.permute(0, 2, 1, 3).contiguous() |
|
|
|
def forward(self, x, history=None, layer_past=None, len_past=None): |
|
hidden_states = x |
|
|
|
x = self.c_attn(x) |
|
query, key, value = x.split(self.split_size, dim=2) |
|
|
|
query = self.split_heads(query) |
|
key = self.split_heads(key, k=True) |
|
value = self.split_heads(value) |
|
|
|
|
|
|
|
len_kv = None |
|
|
|
if layer_past is not None: |
|
|
|
|
|
|
|
if len_past is None: |
|
past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1] |
|
key = torch.cat((past_key, key), dim=-1) |
|
value = torch.cat((past_value, value), dim=-2) |
|
else: |
|
key_seq = key.shape[-1] |
|
assert key_seq == 1 |
|
|
|
_batch = torch.arange(0, key.shape[0], dtype=torch.long, device=key.device) |
|
|
|
past_key, past_value = layer_past[0], layer_past[1] |
|
|
|
past_key[_batch,:,len_past,:] = key.squeeze(-1) |
|
past_value[_batch,:,len_past,:] = value.squeeze(-2) |
|
|
|
key = past_key.transpose(-2, -1) |
|
value = past_value |
|
|
|
len_kv = len_past + 1 |
|
|
|
present = torch.stack((key.transpose(-2, -1), value)) |
|
a = self._attn(query, key, value, len_kv = len_kv) |
|
a = self.merge_heads(a) |
|
a = self.c_proj(a) |
|
|
|
return a, present |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, n_state, config): |
|
super(MLP, self).__init__() |
|
nx = config.n_embd |
|
self.c_fc = Conv1D(n_state, nx) |
|
self.c_proj = Conv1D(nx, n_state) |
|
self.act = gelu |
|
|
|
def forward(self, x): |
|
h = self.act(self.c_fc(x)) |
|
h2 = self.c_proj(h) |
|
return h2 |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__(self, n_ctx, config, scale=False): |
|
super(Block, self).__init__() |
|
nx = config.n_embd |
|
self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon) |
|
self.attn = Attention(nx, n_ctx, config, scale) |
|
self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon) |
|
self.mlp = MLP(4 * nx, config) |
|
|
|
def forward(self, x, layer_past=None, len_past=None): |
|
a, present = self.attn(self.ln_1(x), layer_past=layer_past, len_past=len_past) |
|
x = x + a |
|
m = self.mlp(self.ln_2(x)) |
|
x = x + m |
|
return x, present |
|
|
|
|
|
class GPT2Model(nn.Module): |
|
def __init__(self, config): |
|
super(GPT2Model, self).__init__() |
|
self.n_layer = config.n_layer |
|
self.n_embd = config.n_embd |
|
self.n_vocab = config.vocab_size |
|
|
|
self.wte = nn.Embedding(config.vocab_size, config.n_embd) |
|
self.wpe = nn.Embedding(config.n_positions, config.n_embd) |
|
block = Block(config.n_ctx, config, scale=True) |
|
self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)]) |
|
self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) |
|
|
|
self.config = config |
|
|
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
position_ids=None, |
|
token_type_ids=None, |
|
past=None, |
|
len_past=None |
|
): |
|
if past is None: |
|
past_length = 0 |
|
past = [None] * len(self.h) |
|
elif len_past is None: |
|
|
|
past_length = past[0][0].size(-2) |
|
|
|
if position_ids is None and len_past is None: |
|
position_ids = torch.arange( |
|
past_length, input_ids.size(-1) + past_length, |
|
dtype=torch.long, device=input_ids.device |
|
) |
|
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) |
|
elif len_past is not None: |
|
position_ids = (len_past).unsqueeze(1) |
|
|
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_ids.size(-1)) |
|
position_ids = position_ids.view(-1, position_ids.size(-1)) |
|
|
|
inputs_embeds = self.wte(input_ids) |
|
|
|
position_embeds = self.wpe(position_ids) |
|
|
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) |
|
token_type_embeds = self.wte(token_type_ids) |
|
else: |
|
token_type_embeds = 0 |
|
hidden_states = inputs_embeds + position_embeds + token_type_embeds |
|
presents = [] |
|
for block, layer_past in zip(self.h, past): |
|
hidden_states, present = block(hidden_states, layer_past = layer_past, len_past=len_past) |
|
presents.append(present) |
|
hidden_states = self.ln_f(hidden_states) |
|
output_shape = input_shape + (hidden_states.size(-1),) |
|
return hidden_states.view(*output_shape), presents |
|
|
|
|
|
class GPT2LMHead(nn.Module): |
|
def __init__(self, model_embeddings_weights, config): |
|
super(GPT2LMHead, self).__init__() |
|
self.n_embd = config.n_embd |
|
self.set_embeddings_weights(model_embeddings_weights) |
|
|
|
def set_embeddings_weights(self, model_embeddings_weights): |
|
embed_shape = model_embeddings_weights.shape |
|
self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False) |
|
self.decoder.weight = model_embeddings_weights |
|
|
|
def forward(self, hidden_state): |
|
|
|
|
|
lm_logits = self.decoder(hidden_state) |
|
return lm_logits |
|
|
|
|
|
class GPT2Config(object): |
|
def __init__( |
|
self, |
|
vocab_size_or_config_json_file=50257, |
|
n_positions=1024, |
|
n_ctx=1024, |
|
n_embd=768, |
|
n_layer=12, |
|
n_head=12, |
|
layer_norm_epsilon=1e-5, |
|
initializer_range=0.02, |
|
lora_attn_dim=0, |
|
lora_attn_alpha=128, |
|
lora_dropout=0.0, |
|
lora_r_dropout=0.0, |
|
fix_dropout=0.0, |
|
): |
|
self.vocab_size = vocab_size_or_config_json_file |
|
self.n_ctx = n_ctx |
|
self.n_positions = n_positions |
|
self.n_embd = n_embd |
|
self.n_layer = n_layer |
|
self.n_head = n_head |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_range = initializer_range |
|
self.lora_attn_dim = lora_attn_dim |
|
self.lora_attn_alpha = lora_attn_alpha |
|
self.lora_dropout = lora_dropout |
|
self.lora_r_dropout = lora_r_dropout |
|
|
|
self.fix_dropout = fix_dropout |
|
|
|
|
|
class GPT2LMModel(nn.Module): |
|
def __init__(self, config): |
|
super(GPT2LMModel, self).__init__() |
|
self.transformer = GPT2Model(config) |
|
self.lm_head = GPT2LMHead(self.transformer.wte.weight, config) |
|
self.apply(self._init_weights) |
|
|
|
def set_tied(self): |
|
""" Make sure we are sharing the embeddings""" |
|
self.lm_head.set_embeddings_weights(self.transformer.wte.weight) |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
lm_labels=None, |
|
lm_mask=None, |
|
past=None, |
|
len_past=None, |
|
label_smooth=0.0, |
|
is_report_accuracy=False |
|
): |
|
_batch, _len = input_ids.shape |
|
hidden_states, presents = self.transformer(input_ids, past=past, len_past=len_past) |
|
|
|
|
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
if lm_labels is not None: |
|
|
|
if is_report_accuracy: |
|
_pred_token = torch.argmax(lm_logits, dim=-1) |
|
_hit = (_pred_token == lm_labels) * lm_mask |
|
|
|
_t1_acc = torch.zeros(_batch, dtype=torch.float, device=input_ids.device) |
|
_all_acc = torch.zeros(_batch, dtype=torch.float, device=input_ids.device) |
|
|
|
for _b in range(0, _batch): |
|
for _i in range(0, _len): |
|
if lm_mask[_b, _i] >= 1.0: |
|
if _hit[_b, _i] > 0: |
|
_t1_acc[_b] = 1.0 |
|
break |
|
|
|
_is_succ = True |
|
for _i in range(0, _len): |
|
if lm_mask[_b, _i] >= 1.0: |
|
if _hit[_b, _i] <= 0: |
|
_is_succ = False |
|
break |
|
|
|
if _is_succ: |
|
_all_acc[_b] = 1.0 |
|
|
|
|
|
|
|
|
|
if label_smooth > 0.0001: |
|
logprobs = torch.nn.functional.log_softmax(lm_logits.view(-1, lm_logits.size(-1)), dim=-1) |
|
nll_loss = -logprobs.gather(dim=-1, index=lm_labels.view(-1).unsqueeze(1)) |
|
nll_loss = nll_loss.squeeze(1) |
|
smooth_loss = -logprobs.mean(dim=-1) |
|
loss = (1.0 - label_smooth) * nll_loss + label_smooth * smooth_loss |
|
loss = loss.view(_batch, _len) |
|
else: |
|
loss_fct = nn.CrossEntropyLoss(ignore_index=-1, reduce=False) |
|
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1)).view(_batch, _len) |
|
|
|
if lm_mask is None: |
|
lm_mask = torch.ones(loss.shape, dtype=loss.dtype, device=loss.device) |
|
loss = loss * lm_mask |
|
|
|
loss = loss.sum() / (lm_mask.sum() + 0.0001) |
|
|
|
if is_report_accuracy: |
|
return lm_logits, loss, _t1_acc, _all_acc |
|
else: |
|
return lm_logits, loss |
|
return lm_logits, presents |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, (nn.Linear, nn.Embedding)): |
|
module.weight.data.normal_(mean=0.0, std=0.02) |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
if isinstance(module, nn.Linear) and module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
def load_weight(self, state_dict): |
|
if 'model_state_dict' in state_dict: |
|
state_dict = state_dict['model_state_dict'] |
|
|
|
state_dict_tmp = copy.deepcopy(state_dict) |
|
old_keys = [] |
|
new_keys = [] |
|
for key in state_dict_tmp: |
|
new_key = None |
|
if key.endswith(".g"): |
|
new_key = key[:-2] + ".weight" |
|
elif key.endswith(".b"): |
|
new_key = key[:-2] + ".bias" |
|
elif key.endswith(".w"): |
|
new_key = key[:-2] + ".weight" |
|
|
|
if key.startswith("module.transformer."): |
|
new_key = key[len("module.transformer."):] |
|
|
|
if new_key: |
|
old_keys.append(key) |
|
new_keys.append(new_key) |
|
|
|
for old_key, new_key in zip(old_keys, new_keys): |
|
state_dict[new_key] = state_dict.pop(old_key) |
|
|
|
for n, p in self.transformer.named_parameters(): |
|
if n not in state_dict: |
|
state_dict[n] = p |
|
|
|
self.transformer.load_state_dict(state_dict, strict=False) |
|
self.set_tied() |
|
|