File size: 4,678 Bytes
cc9c7ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import json
import torch
from torch.autograd import Variable
from torch.utils.tensorboard import SummaryWriter

# from torchvision.utils import make_grid
# from torchviz import make_dot


class Logger:
    """"""

    def __init__(self, model, trainer, log_dir, comment=None):
        """Initializer for Logger Class
        Args:

        """
        self.model_path = os.path.join(log_dir, model, trainer)
        self.writer = SummaryWriter(log_dir=self.model_path, comment=comment)
        try:
            if not os.path.exists(log_dir):
                os.makedirs(log_dir)
            if not (os.path.exists(self.model_path)):
                os.makedirs(self.model_path)
            else:
                pass
                # print("Directory Already Exists.")
        except Exception as e:
            print(e)
            print("Failed to Create Log Directory.")

    def save_params(
        self,
        param_list,
        param_name_list,
        epoch=None,
        batch_size=None,
        batch=None,
        combine=False,
        combine_name=None,
        global_step=None,
    ):
        if combine == False:
            for i in range(len(param_list)):
                if isinstance(param_list[i], Variable):
                    param_list[i] = param_list[i].data.cpu().numpy()

                if global_step is None:
                    self.writer.add_scalar(
                        param_name_list[i],
                        param_list[i],
                        Logger._global_step(epoch, batch_size, batch),
                    )
                else:
                    self.writer.add_scalar(
                        param_name_list[i], param_list[i], global_step
                    )

        else:
            scalar_dict = dict(zip(param_name_list, param_list))
            if global_step is None:
                self.writer.add_scalars(
                    combine_name,
                    scalar_dict,
                    Logger._global_step(epoch, batch_size, batch),
                )
            else:
                self.writer.add_scalars(combine_name, scalar_dict, global_step)

    def save_batch_images(
        self, image_name, image_batch, epoch, batch_size, batch=None, dataformats="CHW"
    ):
        self.writer.add_images(
            image_name,
            image_batch,
            Logger._global_step(epoch, batch_size, batch),
            dataformats=dataformats,
        )

    def save_prcurve(self, labels, preds, epoch, batch_size, batch=None):
        self.writer.add_pr_curve(
            "pr_curve", labels, preds, Logger._global_step(epoch, batch_size, batch)
        )

    def save_hyperparams(
        self, hparam_list, hparam_name_list, metric_list, metric_name_list
    ):

        for i in range(len(hparam_list)):
            if isinstance(hparam_list[i], list):
                hparam_list[i] = ",".join(list(map(str, hparam_list[i])))
            if isinstance(hparam_list[i], dict):
                hparam_list[i] = json.dumps(hparam_list[i])
            if hparam_list[i] is None:
                hparam_list[i] = "None"
        print(hparam_list, hparam_name_list, metric_list, metric_name_list)
        self.writer.add_hparams(
            dict(zip(hparam_name_list, hparam_list)),
            dict(zip(metric_name_list, metric_list)),
        )

    def save_models(self, model_list, model_names_list, epoch):
        for model_name, model in zip(model_names_list, model_list):
            torch.save(model.state_dict(), os.path.join(self.model_path, model_name))

    def save_fig(self, fig, fig_name, epoch, batch_size, batch=None):
        self.writer.add_figure(
            fig_name, fig, Logger._global_step(epoch, batch_size, batch)
        )

    # def display_params(self,
    #     params_list, params_name_list, epoch, num_epochs, batch_size, batch
    # ):
    #     for i in range(len(params_list)):
    #         if isinstance(params_list[i], Variable):
    #             params_list[i] = params_list[i].data.cpu().numpy()
    #     print("Epoch: {}/{}, Batch: {}/{}".format(epoch, num_epochs, batch, batch_size))
    #     for i in range(len(params_list)):
    #         print("{}:{}".format(params_name_list[i], params_list[i]))
    #
    # def draw_model_architecture(self,model, output, input, input_name, save_name):
    #     make_dot(
    #         output, params=dict(list(model.named_parameters())) + [(input_name, input)]
    #     )

    def close(self):
        self.writer.close()

    @staticmethod
    def _global_step(epoch, batch_size, batch):
        if batch:
            return epoch * batch_size + batch
        else:
            return epoch