File size: 4,613 Bytes
cc9c7ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
"""Miscellaneous utility functions."""
import random
import numpy as np
import torch
import copy
import itertools
def seed(value=42):
"""Set random seed for everything.
Args:
value (int): Seed
"""
np.random.seed(value)
torch.manual_seed(value)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
random.seed(value)
def map_dict_to_obj(dic):
result_dic = {}
if dic is not None:
for k, v in dic.items():
if isinstance(v, dict):
result_dic[k] = map_dict_to_obj(v)
else:
try:
obj = configmapper.get_object("params", v)
result_dic[k] = obj
except:
result_dic[k] = v
return result_dic
def get_item_in_config(config, path):
## config is a dictionary
curr = config
if isinstance(config, dict):
for step in path:
curr = curr[step]
if curr is None:
break
else:
for step in path:
curr = curr.__getattr__(step)
if curr is None:
break
return curr
# init = train_config.grid_search
# curr = get_item_in_config(init,['hyperparams','loader_params'])
# curr.set_value('batch_size',1)
# print(train_config.grid_search)
def generate_grid_search_configs(main_config, grid_config, root="hyperparams"):
## DFS
locations_values_pair = {}
init = grid_config.as_dict()
# print(init)
stack = [root]
visited = [stack[-1]]
log_label_path = None
hparams_path = None
# root = init[stack[-1]]
while len(stack) != 0:
root = get_item_in_config(init, stack)
flag = 0
# print(visited)
# print(stack)
if (
not isinstance(root, dict) and "hparams" not in stack
): ## Meaning it is a leaf node
# print(stack)
if isinstance(root, list):
locations_values_pair[
tuple(copy.deepcopy(stack))
] = root ## Append the current stack, and the list values
else:
locations_values_pair[tuple(copy.deepcopy(stack))] = [
root,
] ## Append the current stack, and the list values
_ = stack.pop() ## Pop this root because we don't need it.
else:
if isinstance(root, list) and "hparams" in stack:
hparams_path = copy.deepcopy(stack)
visited.append(".".join(stack))
stack.pop()
continue
if "log_label" in root.keys():
log_label_path = copy.deepcopy(
stack
+ [
"log_label",
]
)
if "log_label" in root.keys():
log_label_path = copy.deepcopy(
stack
+ [
"log_label",
]
)
parent = root ## Otherwise it has children
for key in parent.keys(): ## For the children
if (
".".join(
stack
+ [
key,
]
)
not in visited
): ## Check if I have visited these children
flag = 1 ## If not, we need to repeat the process for this key
stack.append(key) ## Append this key to the stack
visited.append(".".join(stack))
break
if flag == 0:
stack.pop()
paths = list(locations_values_pair.keys())
values = itertools.product(*list(locations_values_pair.values()))
result_configs = []
for value in values:
for item_index in range(len(value)):
curr_path = paths[item_index]
curr_item = value[item_index]
curr_config_item = get_item_in_config(main_config, curr_path[1:-1])
curr_config_item.set_value(curr_path[-1], curr_item)
log_item = get_item_in_config(main_config, log_label_path[1:-1])
log_item.set_value(log_label_path[-1], str(len(result_configs) + 1))
hparam_item = get_item_in_config(main_config, hparams_path[1:-1])
hparam_item.set_value(
hparams_path[-1],
get_item_in_config(grid_config.hyperparams, hparams_path[1:]),
)
result_configs.append(copy.deepcopy(main_config))
return result_configs
|