Fal7acy commited on
Commit
5cfa59c
·
1 Parent(s): 33cae36

Upload model

Browse files
Files changed (4) hide show
  1. config.json +26 -0
  2. config.py +43 -0
  3. language.py +169 -0
  4. pytorch_model.bin +3 -0
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BigBrainLanguageModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "auto_map": {
7
+ "AutoConfig": "config.BigBrainConfig",
8
+ "AutoModel": "language.BigBrainLanguageModel"
9
+ },
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_probability": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-06,
16
+ "max_position_embeddings": 512,
17
+ "model_type": "big-brain-lm",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "rope_theta": 10000,
21
+ "sos_token_id": 0,
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.31.0",
24
+ "unk_token_id": 3,
25
+ "vocab_size": 50265
26
+ }
config.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class BigBrainConfig(PretrainedConfig):
5
+ model_type = 'big-brain-lm'
6
+
7
+ def __init__(
8
+ self,
9
+ vocab_size=50265,
10
+ hidden_size=768,
11
+ num_hidden_layers=12,
12
+ num_attention_heads=12,
13
+ intermediate_size=3072,
14
+ hidden_act='gelu',
15
+ hidden_dropout_probability=0.1,
16
+ attention_probs_dropout_prob=0.1,
17
+ max_position_embeddings=512,
18
+ initializer_range=0.02,
19
+ layer_norm_eps=1e-6,
20
+ rope_theta=10000,
21
+ sos_token_id=0,
22
+ pad_token_id=1,
23
+ eos_token_id=2,
24
+ unk_token_id=3,
25
+ **kwargs
26
+ ):
27
+ self.vocab_size = vocab_size
28
+ self.hidden_size = hidden_size
29
+ self.num_hidden_layers = num_hidden_layers
30
+ self.num_attention_heads = num_attention_heads
31
+ self.intermediate_size = intermediate_size
32
+ self.hidden_act = hidden_act
33
+ self.hidden_dropout_probability = hidden_dropout_probability
34
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
35
+ self.max_position_embeddings = max_position_embeddings
36
+ self.initializer_range = initializer_range
37
+ self.layer_norm_eps = layer_norm_eps
38
+ self.rope_theta = rope_theta
39
+ self.sos_token_id = sos_token_id
40
+ self.pad_token_id = pad_token_id
41
+ self.eos_token_id = eos_token_id
42
+ self.unk_token_id = unk_token_id
43
+ super().__init__(**kwargs)
language.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ from torch.nn import functional as f
6
+ from transformers import PreTrainedModel
7
+ from transformers.activations import ACT2FN
8
+
9
+ from config import BigBrainConfig
10
+
11
+
12
+ def _make_casual_mask(size: int) -> torch.Tensor:
13
+ return torch.tril(torch.ones(size, size))
14
+
15
+
16
+ class RootMeanSquareNorm(nn.Module):
17
+ def __init__(self, hidden_size, eps=1e-6):
18
+ super().__init__()
19
+ self.weight = nn.Parameter(torch.ones(hidden_size))
20
+ self.variance_eps = eps
21
+
22
+ def forward(self, x: torch.Tensor):
23
+ variance = x.pow(2).mean(-1, keepdim=True)
24
+ x = x * torch.rsqrt(variance + self.variance_eps)
25
+ return self.weight * x
26
+
27
+
28
+ class MultiLayerPerceptron(nn.Module):
29
+ def __init__(self, config: BigBrainConfig):
30
+ super().__init__()
31
+ self.config = config
32
+ self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
33
+ self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
34
+ self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
35
+ self.act_fn = ACT2FN[config.hidden_act]
36
+
37
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
38
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
39
+
40
+
41
+ class RotaryPositionalEmbedding(nn.Module):
42
+ def __init__(self, dim: int, base: int = 10000):
43
+ super().__init__()
44
+ self.dim = dim
45
+ self.base = base
46
+ self.cos = None
47
+ self.sin = None
48
+
49
+ def _build_cache(self, x: torch.Tensor):
50
+ if self.cos is not None and x.shape[0] <= self.cos.shape[0]:
51
+ return
52
+
53
+ seq_len = x.shape[0]
54
+ theta = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim)).to(x.device)
55
+ seq_idx = torch.arange(seq_len, device=x.device).float().to(x.device)
56
+ idx_theta = torch.einsum('a,b->ab', seq_idx, theta)
57
+ idx_theta = torch.cat([idx_theta, idx_theta], dim=1)
58
+
59
+ self.cos = idx_theta.cos()[:, None, None, :]
60
+ self.sin = idx_theta.sin()[:, None, None, :]
61
+
62
+ def _neg_half(self, x: torch.Tensor):
63
+ d_2 = self.dim // 2
64
+ return torch.cat([-x[:, :, :, d_2:], x[:, :, :, :d_2]], dim=-1)
65
+
66
+ def forward(self, x: torch.Tensor):
67
+ self._build_cache(x)
68
+ x_rope, x_pass = x[..., :self.dim], x[..., self.dim:]
69
+ neg_half_x = self._neg_half(x_rope)
70
+ x_rope = (x_rope * self.cos[:x.shape[0]]) + (neg_half_x * self.sin[:x.shape[0]])
71
+ return torch.cat((x_rope, x_pass), dim=-1)
72
+
73
+
74
+ class RotaryMultiHeadAttention(nn.Module):
75
+ def __init__(self, config: BigBrainConfig):
76
+ super().__init__()
77
+ self.config = config
78
+ self.hidden_size = config.hidden_size
79
+ self.num_heads = config.num_attention_heads
80
+ self.head_dim = config.hidden_size // config.num_attention_heads
81
+
82
+ if (self.head_dim * config.num_attention_heads) != config.hidden_size:
83
+ raise ValueError('num_embedd must be evenly divisible by num_heads')
84
+
85
+ self.q_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
86
+ self.k_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
87
+ self.v_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
88
+ self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
89
+ self.rope_e = RotaryPositionalEmbedding(self.head_dim, config.rope_theta)
90
+
91
+ def _shape(self, tensor: torch.Tensor, batch_size: int, seq_len: int):
92
+ return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
93
+
94
+ def _reshape(self, tensor: torch.Tensor, batch_size: int, seq_len: int):
95
+ return tensor.transpose(1, 2).contiguous().reshape(batch_size, seq_len, self.hidden_size)
96
+
97
+ def forward(self, states: torch.Tensor, mask: torch.Tensor = None) -> torch.Tensor:
98
+ batch_size, seq_len, _ = states.size()
99
+
100
+ q_states = self.rope_e(self._shape(self.q_proj(states), batch_size, seq_len))
101
+ k_states = self.rope_e(self._shape(self.k_proj(states), batch_size, seq_len))
102
+ v_states = self._shape(self.v_proj(states), batch_size, seq_len)
103
+
104
+ attn_weights = torch.matmul(q_states, k_states.transpose(2, 3)) / math.sqrt(self.head_dim)
105
+ attn_weights = torch.clamp(attn_weights, min=-1024.0, max=1024.0)
106
+
107
+ if mask is not None:
108
+ attn_weights = attn_weights.masked_fill(mask == 0, float('-inf'))
109
+
110
+ attn_weights = f.softmax(attn_weights, dim=-1)
111
+ attn_outputs = torch.matmul(attn_weights, v_states)
112
+ return self._reshape(attn_outputs, batch_size, seq_len)
113
+
114
+
115
+ class BigBrainDecoderLayer(nn.Module):
116
+ def __init__(self, config: BigBrainConfig):
117
+ super().__init__()
118
+ self.config = config
119
+ self.self_attn = RotaryMultiHeadAttention(config)
120
+ self.feed_forward = MultiLayerPerceptron(config)
121
+ self.input_norm = RootMeanSquareNorm(config.hidden_size, config.layer_norm_eps)
122
+ self.attn_norm = RootMeanSquareNorm(config.hidden_size, config.layer_norm_eps)
123
+ self.register_buffer('attn_mask', _make_casual_mask(config.max_position_embeddings))
124
+
125
+ def forward(self, x: torch.Tensor):
126
+ batch_size, seq_len, _ = x.size()
127
+ mask = self.attn_mask[:seq_len, :seq_len]
128
+ x = x + self.self_attn(self.input_norm(x), mask)
129
+ x = x + self.feed_forward(self.attn_norm(x))
130
+ return x
131
+
132
+
133
+ class BigBrainLanguageModel(PreTrainedModel):
134
+ config_class = BigBrainConfig
135
+ base_model_prefix = 'big-brain-lm'
136
+
137
+ def __init__(self, config: BigBrainConfig):
138
+ super().__init__(config)
139
+ self.config = config
140
+ self.tok_embed = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
141
+ self.layers = nn.ModuleList([BigBrainDecoderLayer(config) for _ in range(config.num_hidden_layers)])
142
+ self.norm = RootMeanSquareNorm(config.hidden_size, config.layer_norm_eps)
143
+ self.linear = nn.Linear(config.hidden_size, config.vocab_size)
144
+ self.post_init()
145
+
146
+ def _init_weights(self, module):
147
+ std = self.config.initializer_range
148
+ if isinstance(module, nn.Linear):
149
+ module.weight.data.normal_(mean=0.0, std=std)
150
+ if module.bias is not None:
151
+ module.bias.data.zero_()
152
+ elif isinstance(module, nn.Embedding):
153
+ module.weight.data.normal_(mean=0.0, std=std)
154
+ if module.padding_idx is not None:
155
+ module.weight.data[module.padding_idx].zero_()
156
+
157
+ def forward(self, input_ids: torch.Tensor, target_ids: torch.Tensor = None):
158
+ hidden_states = self.tok_embed(input_ids)
159
+ for decoder_layer in self.layers:
160
+ hidden_states = decoder_layer(hidden_states)
161
+ hidden_states = self.norm(hidden_states)
162
+ hidden_states = self.linear(hidden_states)
163
+
164
+ if target_ids is None:
165
+ return hidden_states, None
166
+
167
+ b, t, c = hidden_states.size()
168
+ loss = f.cross_entropy(hidden_states.view(b * t, c), target_ids.view(b * t))
169
+ return hidden_states, loss
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c547697b1f4cc69295875fd3afc1679df421333ef53026d3f1f50cbc6b1dd5a3
3
+ size 774713018