simpletuner-v1-full

This is a full rank finetune derived from SG161222/RealVisXL_V5.0.

The main validation prompt used during training was:

a photograph of ohwx woman

Validation settings

  • CFG: 4.2
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: None
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
a photograph of ohwx woman
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 0
  • Training steps: 500
  • Learning rate: 1e-06
    • Learning rate schedule: polynomial
    • Warmup steps: 1000
  • Max grad norm: 2.0
  • Effective batch size: 2
    • Micro-batch size: 2
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Gradient checkpointing: True
  • Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing'])
  • Optimizer: adamw_bf16
  • Trainable parameter precision: Pure BF16
  • Caption dropout probability: 10.0%

Datasets

my-dataset-1024

  • Repeats: 63
  • Total number of images: 69
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

regularisation-data-1024px

  • Repeats: 0
  • Total number of images: 1000
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: Yes

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'FastFreddi/simpletuner-v1-full'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16

prompt = "a photograph of ohwx woman"
negative_prompt = 'blurry, cropped, ugly'

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=1024,
    height=1024,
    guidance_scale=4.2,
    guidance_rescale=0.0,
).images[0]
image.save("output.png", format="PNG")

Exponential Moving Average (EMA)

SimpleTuner generates a safetensors variant of the EMA weights and a pt file.

The safetensors file is intended to be used for inference, and the pt file is for continuing finetuning.

The EMA model may provide a more well-rounded result, but typically will feel undertrained compared to the full model as it is a running decayed average of the model weights.

Downloads last month
58
Inference Examples
Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for FastFreddi/simpletuner-v1-full

Finetuned
(2)
this model