simpletuner-v1-full
This is a full rank finetune derived from SG161222/RealVisXL_V5.0.
The main validation prompt used during training was:
a photograph of ohwx woman
Validation settings
- CFG:
4.2
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
None
- Seed:
42
- Resolution:
1024x1024
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 0
- Training steps: 500
- Learning rate: 1e-06
- Learning rate schedule: polynomial
- Warmup steps: 1000
- Max grad norm: 2.0
- Effective batch size: 2
- Micro-batch size: 2
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Gradient checkpointing: True
- Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing'])
- Optimizer: adamw_bf16
- Trainable parameter precision: Pure BF16
- Caption dropout probability: 10.0%
Datasets
my-dataset-1024
- Repeats: 63
- Total number of images: 69
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
regularisation-data-1024px
- Repeats: 0
- Total number of images: 1000
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: Yes
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'FastFreddi/simpletuner-v1-full'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
prompt = "a photograph of ohwx woman"
negative_prompt = 'blurry, cropped, ugly'
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1024,
height=1024,
guidance_scale=4.2,
guidance_rescale=0.0,
).images[0]
image.save("output.png", format="PNG")
Exponential Moving Average (EMA)
SimpleTuner generates a safetensors variant of the EMA weights and a pt file.
The safetensors file is intended to be used for inference, and the pt file is for continuing finetuning.
The EMA model may provide a more well-rounded result, but typically will feel undertrained compared to the full model as it is a running decayed average of the model weights.
- Downloads last month
- 58
Model tree for FastFreddi/simpletuner-v1-full
Base model
SG161222/RealVisXL_V5.0