Create train_unsloth_7b.py
Browse files- train_unsloth_7b.py +122 -0
train_unsloth_7b.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from unsloth import FastLlamaModel
|
2 |
+
import torch
|
3 |
+
from trl import SFTTrainer, DataCollatorForCompletionOnlyLM
|
4 |
+
from transformers import TrainingArguments
|
5 |
+
from datasets import load_from_disk
|
6 |
+
import math
|
7 |
+
import wandb
|
8 |
+
import os
|
9 |
+
|
10 |
+
|
11 |
+
max_seq_length = 2048 # Can change to whatever number <= 4096
|
12 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
13 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
14 |
+
|
15 |
+
|
16 |
+
revisions = [("250k", "8ee454fe392a0267c3dee21323b5cac233d67441"),
|
17 |
+
("500k", "12d3eec2d02533226c9cff719d4278967574ffcd"), ("750k", "845b8c6d8499c0e8fea0b8e5480d72e700385820"), ("1000k", "53669200ad7a6a6f1ac6a73e54c9e54c1d834a17")]
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
#for revision in revisions:
|
22 |
+
model, tokenizer = FastLlamaModel.from_pretrained(
|
23 |
+
model_name = "Finnish-NLP/llama-7b-finnish",
|
24 |
+
max_seq_length = max_seq_length,
|
25 |
+
dtype = dtype,
|
26 |
+
load_in_4bit = load_in_4bit,
|
27 |
+
revision='53669200ad7a6a6f1ac6a73e54c9e54c1d834a17'
|
28 |
+
)
|
29 |
+
|
30 |
+
tokenizer.clean_up_tokenization_spaces=True
|
31 |
+
tokenizer.add_tokens(["<|alku|>", "<PAD>", "<|ihminen|>", "<|avustaja|>"])
|
32 |
+
tokenizer.pad_token = "<PAD>"
|
33 |
+
tokenizer.add_special_tokens({'eos_token': '<|loppu|>'})
|
34 |
+
tokenizer.add_tokens('\n', special_tokens=True)
|
35 |
+
tokenizer.add_eos_token=True
|
36 |
+
model.resize_token_embeddings(new_num_tokens=len(tokenizer))
|
37 |
+
model.config.eos_token_id = tokenizer.eos_token_id
|
38 |
+
print(model.config.eos_token_id)
|
39 |
+
assert tokenizer.pad_token_id != tokenizer.eos_token_id
|
40 |
+
print(tokenizer.padding_side)
|
41 |
+
print(tokenizer.add_bos_token)
|
42 |
+
print(model)
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
model = FastLlamaModel.get_peft_model(
|
47 |
+
model,
|
48 |
+
r = 32,
|
49 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
50 |
+
"gate_proj", "up_proj", "down_proj"],
|
51 |
+
lora_alpha = 32,
|
52 |
+
lora_dropout = 0
|
53 |
+
bias = "none"
|
54 |
+
use_gradient_checkpointing = True,
|
55 |
+
modules_to_save = ["lm_head", "embed_tokens"],
|
56 |
+
random_state = 3407,
|
57 |
+
max_seq_length = max_seq_length,
|
58 |
+
use_rslora=True
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
dataset = load_from_disk("deepl_kaannetyt_combined")
|
63 |
+
dataset = dataset.train_test_split(test_size=0.02)
|
64 |
+
|
65 |
+
|
66 |
+
bs = 2
|
67 |
+
ga = 4
|
68 |
+
epochs = 3
|
69 |
+
train_steps = math.ceil(len(dataset["train"]) / bs / ga * epochs)
|
70 |
+
print(train_steps)
|
71 |
+
eval_steps = math.ceil(train_steps/10)
|
72 |
+
print(eval_steps)
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
try:
|
77 |
+
wandb.finish()
|
78 |
+
except Exception as e:
|
79 |
+
wandb.init()
|
80 |
+
|
81 |
+
response_template = "\n<|avustaja|> Vastauksesi:"
|
82 |
+
response_template_ids = tokenizer.encode(response_template, add_special_tokens=False)
|
83 |
+
|
84 |
+
|
85 |
+
collator = DataCollatorForCompletionOnlyLM(response_template_ids, tokenizer=tokenizer, mlm=False)
|
86 |
+
|
87 |
+
trainer = SFTTrainer(
|
88 |
+
model = model,
|
89 |
+
train_dataset = dataset["train"],
|
90 |
+
eval_dataset = dataset["test"],
|
91 |
+
dataset_text_field = "text",
|
92 |
+
data_collator=collator,
|
93 |
+
max_seq_length = max_seq_length,
|
94 |
+
tokenizer=tokenizer,
|
95 |
+
args = TrainingArguments(
|
96 |
+
per_device_train_batch_size = 2,
|
97 |
+
per_device_eval_batch_size = 2,
|
98 |
+
gradient_accumulation_steps = 4,
|
99 |
+
warmup_steps = 50,
|
100 |
+
max_steps = train_steps,
|
101 |
+
report_to="wandb",
|
102 |
+
eval_steps=eval_steps,
|
103 |
+
evaluation_strategy="steps",
|
104 |
+
save_strategy='steps',
|
105 |
+
learning_rate = 2e-5,
|
106 |
+
fp16 = not torch.cuda.is_bf16_supported(),
|
107 |
+
bf16 = torch.cuda.is_bf16_supported(),
|
108 |
+
logging_steps = 5,
|
109 |
+
optim = "adamw_8bit",
|
110 |
+
weight_decay = 0.001,
|
111 |
+
lr_scheduler_type = "cosine",
|
112 |
+
seed = 3407,
|
113 |
+
output_dir = f"llama7b-finniish-instruct-v0.1",
|
114 |
+
),
|
115 |
+
)
|
116 |
+
|
117 |
+
wandb.login()
|
118 |
+
|
119 |
+
trainer.train()
|
120 |
+
|
121 |
+
|
122 |
+
|