aapot
commited on
Commit
·
74efc84
1
Parent(s):
61cd9b4
Add configs
Browse files- .gitattributes +1 -0
- .gitignore +1 -0
- base_nl36.gin +23 -0
- base_nl36_pretrain.gin +24 -0
- config.json +29 -0
- convert_t5x_checkpoint_to_flax.py +157 -0
- flax_model_to_pytorch.py +27 -0
- spiece.model +3 -0
- spiece.vocab +0 -0
- start_train.sh +12 -0
- tasks.py +82 -0
.gitattributes
CHANGED
@@ -26,3 +26,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
26 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
27 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
28 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
26 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
27 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
28 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
29 |
+
checkpoint*/** filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__/
|
base_nl36.gin
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# T5.1.1 Efficient base nl36 model.
|
2 |
+
|
3 |
+
import seqio
|
4 |
+
include 't5x/examples/t5/t5_1_1/base.gin' # imports vocab, optimizer and model.
|
5 |
+
|
6 |
+
# ------------------- Network specification overrides --------------------------
|
7 |
+
network.Transformer.config = @network.T5Config()
|
8 |
+
network.T5Config:
|
9 |
+
emb_dim = 768
|
10 |
+
num_heads = 12
|
11 |
+
num_encoder_layers = 36
|
12 |
+
num_decoder_layers = 36
|
13 |
+
head_dim = 64
|
14 |
+
mlp_dim = 3072
|
15 |
+
|
16 |
+
# ------------------- Model specification overrides --------------------------
|
17 |
+
VOCABULARY = @seqio.SentencePieceVocabulary()
|
18 |
+
seqio.SentencePieceVocabulary.sentencepiece_model_file = "spiece.model"
|
19 |
+
|
20 |
+
MODEL = @models.EncoderDecoderModel()
|
21 |
+
models.EncoderDecoderModel:
|
22 |
+
input_vocabulary = %VOCABULARY
|
23 |
+
output_vocabulary = %VOCABULARY
|
base_nl36_pretrain.gin
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Register necessary SeqIO Tasks/Mixtures.
|
2 |
+
from __gin__ import dynamic_registration
|
3 |
+
from t5x import utils
|
4 |
+
import tasks
|
5 |
+
import __main__ as train_script
|
6 |
+
|
7 |
+
include 'base_nl36.gin'
|
8 |
+
include 't5x/configs/runs/pretrain.gin'
|
9 |
+
|
10 |
+
|
11 |
+
# ------------------- Training specification overrides --------------------------
|
12 |
+
train_script.train:
|
13 |
+
eval_period = 10000
|
14 |
+
|
15 |
+
utils.SaveCheckpointConfig:
|
16 |
+
period = 10000
|
17 |
+
keep = 10
|
18 |
+
|
19 |
+
MIXTURE_OR_TASK_NAME = "pretrain_finnish"
|
20 |
+
USE_CACHED_TASKS = False
|
21 |
+
TASK_FEATURE_LENGTHS = {"inputs": 512, "targets": 512}
|
22 |
+
TRAIN_STEPS = 500000
|
23 |
+
DROPOUT_RATE = 0.0
|
24 |
+
BATCH_SIZE = 256
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./",
|
3 |
+
"architectures": [
|
4 |
+
"T5ForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"d_ff": 3072,
|
7 |
+
"d_kv": 64,
|
8 |
+
"d_model": 768,
|
9 |
+
"decoder_start_token_id": 0,
|
10 |
+
"dropout_rate": 0.1,
|
11 |
+
"eos_token_id": 1,
|
12 |
+
"feed_forward_proj": "gated-gelu",
|
13 |
+
"initializer_factor": 1.0,
|
14 |
+
"is_encoder_decoder": true,
|
15 |
+
"layer_norm_epsilon": 1e-06,
|
16 |
+
"model_type": "t5",
|
17 |
+
"n_positions": 512,
|
18 |
+
"num_decoder_layers": 36,
|
19 |
+
"num_heads": 12,
|
20 |
+
"num_layers": 36,
|
21 |
+
"output_past": true,
|
22 |
+
"pad_token_id": 0,
|
23 |
+
"relative_attention_max_distance": 128,
|
24 |
+
"relative_attention_num_buckets": 32,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"transformers_version": "4.17.0",
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32128
|
29 |
+
}
|
convert_t5x_checkpoint_to_flax.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://gist.github.com/stefan-it/30e4998ef159f33696e377a46f699d9f
|
2 |
+
|
3 |
+
import argparse
|
4 |
+
|
5 |
+
from t5x import checkpoints
|
6 |
+
from transformers import T5Config, FlaxT5ForConditionalGeneration
|
7 |
+
|
8 |
+
|
9 |
+
def convert_t5x_checkpoint_to_flax(t5x_checkpoint_path, config_name, flax_dump_folder_path):
|
10 |
+
config = T5Config.from_pretrained(config_name)
|
11 |
+
flax_model = FlaxT5ForConditionalGeneration(config=config)
|
12 |
+
t5x_model = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path)
|
13 |
+
|
14 |
+
split_mlp_wi = "wi_0" in t5x_model["target"]["encoder"]["layers_0"]["mlp"]
|
15 |
+
|
16 |
+
# Encoder
|
17 |
+
for layer_index in range(config.num_layers):
|
18 |
+
layer_name = f"layers_{str(layer_index)}"
|
19 |
+
|
20 |
+
# Self-Attention
|
21 |
+
t5x_attention_key = t5x_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"]
|
22 |
+
t5x_attention_out = t5x_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"]
|
23 |
+
t5x_attention_query = t5x_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"]
|
24 |
+
t5x_attention_value = t5x_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"]
|
25 |
+
|
26 |
+
## Layer Normalization
|
27 |
+
t5x_attention_layer_norm = t5x_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"]
|
28 |
+
|
29 |
+
if split_mlp_wi:
|
30 |
+
t5x_mlp_wi_0 = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"]
|
31 |
+
t5x_mlp_wi_1 = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"]
|
32 |
+
else:
|
33 |
+
t5x_mlp_wi = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"]
|
34 |
+
|
35 |
+
t5x_mlp_wo = t5x_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"]
|
36 |
+
|
37 |
+
## Layer Normalization
|
38 |
+
t5x_mlp_layer_norm = t5x_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
|
39 |
+
|
40 |
+
# Assigning
|
41 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["k"]["kernel"] = t5x_attention_key
|
42 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["o"]["kernel"] = t5x_attention_out
|
43 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["q"]["kernel"] = t5x_attention_query
|
44 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["v"]["kernel"] = t5x_attention_value
|
45 |
+
|
46 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["layer_norm"]["weight"] = t5x_attention_layer_norm
|
47 |
+
|
48 |
+
if split_mlp_wi:
|
49 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wi_0"]["kernel"] = t5x_mlp_wi_0
|
50 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wi_1"]["kernel"] = t5x_mlp_wi_1
|
51 |
+
else:
|
52 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wi"]["kernel"] = t5x_mlp_wi
|
53 |
+
|
54 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wo"]["kernel"] = t5x_mlp_wo
|
55 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["layer_norm"]["weight"] = t5x_mlp_layer_norm
|
56 |
+
|
57 |
+
# Only for layer 0:
|
58 |
+
t5x_encoder_rel_embedding = t5x_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T
|
59 |
+
flax_model.params["encoder"]["block"]["0"]["layer"]["0"]["SelfAttention"]["relative_attention_bias"]["embedding"] = t5x_encoder_rel_embedding
|
60 |
+
|
61 |
+
# Assigning
|
62 |
+
t5x_encoder_norm = t5x_model["target"]["encoder"]["encoder_norm"]["scale"]
|
63 |
+
flax_model.params["encoder"]["final_layer_norm"]["weight"] = t5x_encoder_norm
|
64 |
+
|
65 |
+
# Decoder
|
66 |
+
for layer_index in range(config.num_layers):
|
67 |
+
layer_name = f"layers_{str(layer_index)}"
|
68 |
+
|
69 |
+
# Self-Attention
|
70 |
+
t5x_attention_key = t5x_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"]
|
71 |
+
t5x_attention_out = t5x_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"]
|
72 |
+
t5x_attention_query = t5x_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"]
|
73 |
+
t5x_attention_value = t5x_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"]
|
74 |
+
|
75 |
+
## Layer Normalization
|
76 |
+
t5x_pre_attention_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"]["scale"]
|
77 |
+
|
78 |
+
# Encoder-Decoder-Attention
|
79 |
+
t5x_enc_dec_attention_key = t5x_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]["key"]["kernel"]
|
80 |
+
t5x_enc_dec_attention_out = t5x_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]["out"]["kernel"]
|
81 |
+
t5x_enc_dec_attention_query = t5x_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]["query"]["kernel"]
|
82 |
+
t5x_enc_dec_attention_value = t5x_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]["value"]["kernel"]
|
83 |
+
|
84 |
+
## Layer Normalization
|
85 |
+
t5x_cross_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"]
|
86 |
+
|
87 |
+
# MLP
|
88 |
+
if split_mlp_wi:
|
89 |
+
t5x_mlp_wi_0 = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"]
|
90 |
+
t5x_mlp_wi_1 = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"]
|
91 |
+
else:
|
92 |
+
t5x_mlp_wi = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"]
|
93 |
+
|
94 |
+
t5x_mlp_wo = t5x_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"]
|
95 |
+
|
96 |
+
## Layer Normalization
|
97 |
+
tx5_mlp_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
|
98 |
+
|
99 |
+
# Assigning
|
100 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["k"]["kernel"] = t5x_attention_key
|
101 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["o"]["kernel"] = t5x_attention_out
|
102 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["q"]["kernel"] = t5x_attention_query
|
103 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["v"]["kernel"] = t5x_attention_value
|
104 |
+
|
105 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["layer_norm"]["weight"] = t5x_pre_attention_layer_norm
|
106 |
+
|
107 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["k"]["kernel"] = t5x_enc_dec_attention_key
|
108 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["o"]["kernel"] = t5x_enc_dec_attention_out
|
109 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["q"]["kernel"] = t5x_enc_dec_attention_query
|
110 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["v"]["kernel"] = t5x_enc_dec_attention_value
|
111 |
+
|
112 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["layer_norm"]["weight"] = t5x_cross_layer_norm
|
113 |
+
|
114 |
+
if split_mlp_wi:
|
115 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wi_0"]["kernel"] = t5x_mlp_wi_0
|
116 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wi_1"]["kernel"] = t5x_mlp_wi_1
|
117 |
+
else:
|
118 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wi"]["kernel"] = t5x_mlp_wi
|
119 |
+
|
120 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wo"]["kernel"] = t5x_mlp_wo
|
121 |
+
|
122 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["layer_norm"]["weight"] = tx5_mlp_layer_norm
|
123 |
+
|
124 |
+
# Decoder Normalization
|
125 |
+
tx5_decoder_norm = t5x_model["target"]["decoder"]["decoder_norm"]["scale"]
|
126 |
+
flax_model.params["decoder"]["final_layer_norm"]["weight"] = tx5_decoder_norm
|
127 |
+
|
128 |
+
# Only for layer 0:
|
129 |
+
t5x_decoder_rel_embedding = t5x_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T
|
130 |
+
flax_model.params["decoder"]["block"]["0"]["layer"]["0"]["SelfAttention"]["relative_attention_bias"]["embedding"] = t5x_decoder_rel_embedding
|
131 |
+
|
132 |
+
# Token Embeddings
|
133 |
+
tx5_token_embeddings = t5x_model["target"]["token_embedder"]["embedding"]
|
134 |
+
flax_model.params["shared"]["embedding"] = tx5_token_embeddings
|
135 |
+
|
136 |
+
# LM Head
|
137 |
+
flax_model.params["lm_head"]["kernel"] = t5x_model["target"]["decoder"]["logits_dense"]["kernel"]
|
138 |
+
|
139 |
+
flax_model.save_pretrained(flax_dump_folder_path)
|
140 |
+
print("T5X Model was sucessfully converted!")
|
141 |
+
|
142 |
+
|
143 |
+
if __name__ == "__main__":
|
144 |
+
parser = argparse.ArgumentParser()
|
145 |
+
# Required parameters
|
146 |
+
parser.add_argument(
|
147 |
+
"--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the TX5 checkpoint."
|
148 |
+
)
|
149 |
+
parser.add_argument(
|
150 |
+
"--config_name", default=None, type=str, required=True, help="Config name of T5 model."
|
151 |
+
)
|
152 |
+
parser.add_argument(
|
153 |
+
"--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model."
|
154 |
+
)
|
155 |
+
args = parser.parse_args()
|
156 |
+
convert_t5x_checkpoint_to_flax(args.t5x_checkpoint_path, args.config_name, args.flax_dump_folder_path)
|
157 |
+
|
flax_model_to_pytorch.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForSeq2SeqLM, FlaxAutoModelForSeq2SeqLM, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import jax
|
5 |
+
import jax.numpy as jnp
|
6 |
+
|
7 |
+
def to_f32(t):
|
8 |
+
return jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, t)
|
9 |
+
|
10 |
+
jax.config.update('jax_platform_name', 'cpu')
|
11 |
+
MODEL_PATH = "./"
|
12 |
+
model = FlaxAutoModelForSeq2SeqLM.from_pretrained(MODEL_PATH)
|
13 |
+
model.params = to_f32(model.params)
|
14 |
+
model.save_pretrained(MODEL_PATH)
|
15 |
+
|
16 |
+
pt_model = AutoModelForSeq2SeqLM.from_pretrained(
|
17 |
+
MODEL_PATH, from_flax=True).to('cpu')
|
18 |
+
|
19 |
+
input_ids = np.asarray(2 * [128 * [0]], dtype=np.int32)
|
20 |
+
input_ids_pt = torch.tensor(input_ids)
|
21 |
+
|
22 |
+
logits_pt = pt_model(input_ids=input_ids_pt, decoder_input_ids=input_ids_pt).logits
|
23 |
+
print(logits_pt)
|
24 |
+
logits_fx = model(input_ids=input_ids, decoder_input_ids=input_ids).logits
|
25 |
+
print(logits_fx)
|
26 |
+
|
27 |
+
pt_model.save_pretrained(MODEL_PATH)
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55a3645122435e9773fac81fa3f94c1e14149e80311636dfa9245fba3e57a826
|
3 |
+
size 824186
|
spiece.vocab
ADDED
The diff for this file is too large to render.
See raw diff
|
|
start_train.sh
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# set train hyperparams
|
2 |
+
unset LD_PRELOAD
|
3 |
+
|
4 |
+
PROJECT_DIR="/researchdisk/t5x-base-nl36-finnish"
|
5 |
+
T5X_DIR=${HOME}"/t5x" # directory where the t5x is cloned.
|
6 |
+
MODEL_DIR="/researchdisk/t5x-base-nl36-finnish"
|
7 |
+
export PYTHONPATH=${PROJECT_DIR}
|
8 |
+
|
9 |
+
python3 ${T5X_DIR}/t5x/train.py \
|
10 |
+
--gin_search_paths=${PROJECT_DIR} \
|
11 |
+
--gin_file="base_nl36_pretrain.gin" \
|
12 |
+
--gin.MODEL_DIR=\"${MODEL_DIR}\"
|
tasks.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adapted from https://huggingface.co/pere/pk-nb-t5x/blob/main/tasks.py
|
2 |
+
|
3 |
+
import functools
|
4 |
+
|
5 |
+
import seqio
|
6 |
+
import tensorflow as tf
|
7 |
+
import t5.data
|
8 |
+
from datasets import load_dataset, load_from_disk
|
9 |
+
from t5.data import postprocessors
|
10 |
+
from t5.data import preprocessors
|
11 |
+
from t5.evaluation import metrics
|
12 |
+
from seqio import FunctionDataSource, utils
|
13 |
+
|
14 |
+
TaskRegistry = seqio.TaskRegistry
|
15 |
+
|
16 |
+
vocabulary = seqio.SentencePieceVocabulary('spiece.model', extra_ids=0)
|
17 |
+
|
18 |
+
DEFAULT_OUTPUT_FEATURES = {
|
19 |
+
"inputs": seqio.Feature(
|
20 |
+
vocabulary=vocabulary, add_eos=True,
|
21 |
+
required=False),
|
22 |
+
"targets": seqio.Feature(
|
23 |
+
vocabulary=vocabulary, add_eos=True)
|
24 |
+
}
|
25 |
+
|
26 |
+
|
27 |
+
def gen_dataset(split, shuffle=False, seed=None, column="text", dataset=None):
|
28 |
+
if shuffle:
|
29 |
+
if seed:
|
30 |
+
dataset = dataset.shuffle(seed=seed)
|
31 |
+
else:
|
32 |
+
dataset = dataset.shuffle()
|
33 |
+
while True:
|
34 |
+
for item in dataset[str(split)]:
|
35 |
+
yield item[column]
|
36 |
+
|
37 |
+
|
38 |
+
def dataset_fn(split, shuffle_files, seed=None, dataset=None):
|
39 |
+
return tf.data.Dataset.from_generator(
|
40 |
+
functools.partial(gen_dataset, split, shuffle_files, seed, dataset=dataset),
|
41 |
+
output_signature=tf.TensorSpec(shape=(), dtype=tf.string, name=dataset_name)
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
@utils.map_over_dataset
|
46 |
+
def target_to_key(x, key_map, target_key):
|
47 |
+
"""Assign the value from the dataset to target_key in key_map"""
|
48 |
+
return {**key_map, target_key: x}
|
49 |
+
|
50 |
+
|
51 |
+
# Final pretraining task used in Raffel et al., 2019 adaptated to NCC
|
52 |
+
dataset_name = "/researchdisk/lm_training_dataset_full"
|
53 |
+
dataset_params = {"from_disk_path": dataset_name}
|
54 |
+
|
55 |
+
if "from_disk_path" in dataset_params:
|
56 |
+
dataset = load_from_disk(dataset_params.get("from_disk_path"))
|
57 |
+
else:
|
58 |
+
dataset = load_dataset(**dataset_params)
|
59 |
+
|
60 |
+
dataset_shapes = {"train": dataset["train"].num_rows, "validation": dataset["validation"].num_rows}
|
61 |
+
TaskRegistry.add(
|
62 |
+
"pretrain_finnish",
|
63 |
+
source=seqio.FunctionDataSource(
|
64 |
+
dataset_fn=functools.partial(dataset_fn, dataset=dataset),
|
65 |
+
splits=("train", "validation"),
|
66 |
+
caching_permitted=False,
|
67 |
+
num_input_examples=dataset_shapes,
|
68 |
+
),
|
69 |
+
preprocessors=[
|
70 |
+
functools.partial(
|
71 |
+
target_to_key, key_map={
|
72 |
+
"inputs": None,
|
73 |
+
"targets": None,
|
74 |
+
}, target_key="targets"),
|
75 |
+
seqio.preprocessors.tokenize,
|
76 |
+
# seqio.CacheDatasetPlaceholder(),
|
77 |
+
preprocessors.span_corruption,
|
78 |
+
seqio.preprocessors.append_eos_after_trim,
|
79 |
+
],
|
80 |
+
output_features={"targets": DEFAULT_OUTPUT_FEATURES["targets"]},
|
81 |
+
metric_fns=[metrics.accuracy]
|
82 |
+
)
|