FrancescoPeriti commited on
Commit
9386ee2
·
verified ·
1 Parent(s): 57d37f9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -173
README.md CHANGED
@@ -1,3 +1,12 @@
 
 
 
 
 
 
 
 
 
1
  # Llama2Dictionary
2
 
3
  <!-- Provide a quick summary of what the model is/does. -->
@@ -11,46 +20,22 @@ You will need to login with your hugginface token (```[HF-TOKEN]```, in the foll
11
  This model is fine-tuned on English datasets of sense definitions. Given a target word and a usage example, the model generates a sense definition for the target word in-context.
12
 
13
  You can find more details in the paper [Automatically Generated Definitions and their utility for Modeling Word Meaning](link) by Francesco Periti, David Alfter, Nina Tahmasebi.
14
-
15
-
16
- ### Model Description
17
-
18
- <!-- Provide a longer summary of what this model is. -->
19
-
20
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
21
-
22
- - **Developed by:** [More Information Needed]
23
- - **Funded by [optional]:** [More Information Needed]
24
- - **Shared by [optional]:** [More Information Needed]
25
- - **Model type:** [More Information Needed]
26
- - **Language(s) (NLP):** [More Information Needed]
27
- - **License:** [More Information Needed]
28
- - **Finetuned from model [optional]:** [More Information Needed]
29
-
30
- ### Model Sources [optional]
31
-
32
- <!-- Provide the basic links for the model. -->
33
-
34
- - **Repository:** [More Information Needed]
35
- - **Paper [optional]:** [More Information Needed]
36
- - **Demo [optional]:** [More Information Needed]
37
 
38
  ## Uses
 
 
39
 
40
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
41
-
42
- ### Direct Use
43
-
44
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
45
 
46
- [More Information Needed]
47
-
48
- ### Downstream Use [optional]
49
-
50
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
 
52
- [More Information Needed]
 
53
 
 
54
  ```python
55
  import torch
56
  import warnings
@@ -165,151 +150,10 @@ for row in dataset:
165
  print(f"Target: {row['target']}\nExample: {row['example']}\nSense definition: {row['definition']}")
166
  ```
167
 
168
- ### Out-of-Scope Use
169
-
170
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
171
-
172
- [More Information Needed]
173
-
174
- ## Bias, Risks, and Limitations
175
-
176
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
177
-
178
- [More Information Needed]
179
-
180
- ### Recommendations
181
-
182
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
183
-
184
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
185
-
186
- ## How to Get Started with the Model
187
-
188
- Use the code below to get started with the model.
189
-
190
- [More Information Needed]
191
-
192
- ## Training Details
193
-
194
- ### Training Data
195
-
196
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
197
-
198
- [More Information Needed]
199
-
200
- ### Training Procedure
201
-
202
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
203
-
204
- #### Preprocessing [optional]
205
-
206
- [More Information Needed]
207
-
208
-
209
- #### Training Hyperparameters
210
-
211
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
212
-
213
- #### Speeds, Sizes, Times [optional]
214
-
215
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
216
-
217
- [More Information Needed]
218
-
219
- ## Evaluation
220
-
221
- <!-- This section describes the evaluation protocols and provides the results. -->
222
-
223
- ### Testing Data, Factors & Metrics
224
-
225
- #### Testing Data
226
-
227
- <!-- This should link to a Dataset Card if possible. -->
228
-
229
- [More Information Needed]
230
-
231
- #### Factors
232
-
233
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
234
-
235
- [More Information Needed]
236
-
237
- #### Metrics
238
-
239
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
240
-
241
- [More Information Needed]
242
-
243
- ### Results
244
-
245
- [More Information Needed]
246
-
247
- #### Summary
248
-
249
-
250
-
251
- ## Model Examination [optional]
252
-
253
- <!-- Relevant interpretability work for the model goes here -->
254
-
255
- [More Information Needed]
256
-
257
- ## Environmental Impact
258
-
259
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
260
-
261
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
262
-
263
- - **Hardware Type:** [More Information Needed]
264
- - **Hours used:** [More Information Needed]
265
- - **Cloud Provider:** [More Information Needed]
266
- - **Compute Region:** [More Information Needed]
267
- - **Carbon Emitted:** [More Information Needed]
268
-
269
- ## Technical Specifications [optional]
270
-
271
- ### Model Architecture and Objective
272
-
273
- [More Information Needed]
274
-
275
- ### Compute Infrastructure
276
-
277
- [More Information Needed]
278
-
279
- #### Hardware
280
-
281
- [More Information Needed]
282
-
283
- #### Software
284
-
285
- [More Information Needed]
286
-
287
  ## Citation [optional]
288
 
289
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
290
 
291
  **BibTeX:**
292
 
293
- [More Information Needed]
294
-
295
- **APA:**
296
-
297
- [More Information Needed]
298
-
299
- ## Glossary [optional]
300
-
301
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
302
-
303
- [More Information Needed]
304
-
305
- ## More Information [optional]
306
-
307
- [More Information Needed]
308
-
309
- ## Model Card Authors [optional]
310
-
311
- [More Information Needed]
312
-
313
- ## Model Card Contact
314
-
315
  [More Information Needed]
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ pipeline_tag: text2text-generation
7
+ tags:
8
+ - text-generation-inference
9
+ ---
10
  # Llama2Dictionary
11
 
12
  <!-- Provide a quick summary of what the model is/does. -->
 
20
  This model is fine-tuned on English datasets of sense definitions. Given a target word and a usage example, the model generates a sense definition for the target word in-context.
21
 
22
  You can find more details in the paper [Automatically Generated Definitions and their utility for Modeling Word Meaning](link) by Francesco Periti, David Alfter, Nina Tahmasebi.
23
+ The repository of our project is [https://github.com/FrancescoPeriti/LlamaDictionary](https://github.com/FrancescoPeriti/LlamaDictionary).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
  ## Uses
26
+ The model is designed for research purposes and is conceived to work like a dictionary.
27
+ However, given a word and an example usage, users don't choose from a list of definitions (as in a traditional dictionary); instead, the model directly provides the sense definition for the word in-context.
28
 
29
+ <!-- ### Direct Use -->
 
 
 
30
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
31
 
32
+ <!-- ### Downstream Use [optional]-->
 
 
 
33
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
34
 
35
+ ## Bias, Risks, and Limitations
36
+ The fine-tuning datasets were limited to English, and generated definitions may reflect biases and stereotypes inherent in the underlying language model.
37
 
38
+ ## How to Get Started with the Model
39
  ```python
40
  import torch
41
  import warnings
 
150
  print(f"Target: {row['target']}\nExample: {row['example']}\nSense definition: {row['definition']}")
151
  ```
152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
  ## Citation [optional]
154
 
155
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
156
 
157
  **BibTeX:**
158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159
  [More Information Needed]