File size: 3,216 Bytes
a1c3590 7db28a3 a1c3590 7db28a3 a9e2ffc bec7206 7db28a3 19fce4d bec7206 19fce4d bec7206 19fce4d 7db28a3 c0931f3 efa4892 7db28a3 80838a4 7db28a3 80838a4 7db28a3 a9e2ffc 642ba04 17b3b4c 1dc3eb8 a9e2ffc bec7206 642ba04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
pipeline_tag: image-classification
tags:
- arxiv:2010.07611
- arxiv:2104.00298
license: cc-by-nc-4.0
---
To be clear, this model is tailored to my image and video classification tasks, not to imagenet.
I built EfficientNetV2.5 s to outperform the existing EfficientNet b0 to b4, EfficientNet b1 to b4 pruned (I pruned b4), and EfficientNetV2 t to l models, whether trained using TensorFlow or PyTorch, in terms of top-1 accuracy, efficiency, and robustness on my datasets and GVNS benchmarks.
## Model Details
- **Model tasks:** Image classification / video classification / feature backbone
- **Model stats:**
- Params: 16.64 M
- Multiply-Add Operations: 5.32 G
- Image size: train = 299x299 / 304x304, test = 304x304
- Classification layer: included, and defaults to 1,000 classes
- **Papers:**
- EfficientNetV2: Smaller Models and Faster Training: https://arxiv.org/abs/2104.00298
- Layer-adaptive sparsity for the Magnitude-based Pruning: https://arxiv.org/abs/2010.07611
- **Dataset:** ImageNet-1k
- **Pretrained:** Yes, but requires more pretraining
- **Original:** This model architecture is original
<br>
### Prepare Model for Training
To change the number of classes, replace the linear classification layer.
Here's an example of how to convert the architecture into a trainable model.
```bash
pip install ptflops
```
```python
from ptflops import get_model_complexity_info
import torch
import urllib.request
nclass = 3 # number of classes in your dataset
input_size = (3, 304, 304) # recommended image input size
print_layer_stats = True # prints the statistics for each layer of the model
verbose = True # prints additional info about the MAC calculation
# Download the model. Skip this step if already downloaded
base_model = "efficientnetv2.5_base_in1k"
url = f"https://huggingface.co/FredZhang7/efficientnetv2.5_rw_s/resolve/main/{base_model}.pth"
file_name = f"./{base_model}.pth"
urllib.request.urlretrieve(url, file_name)
model = torch.load(file_name)
model.classifier = torch.nn.Linear(in_features=1984, out_features=nclass, bias=True)
macs, nparams = get_model_complexity_info(model, input_size, as_strings=False, print_per_layer_stat=print_layer_stats, verbose=verbose)
traced_model = torch.jit.trace(model, example_inputs)
model_name = f'{base_model}_{"{:.2f}".format(nparams / 1e6)}M_{"{:.2f}".format(macs / 1e9)}G.pth'
traced_model.save(model_name)
# Load the trainable model
model = torch.load(model_name)
```
### Top-1 Accuracy Comparisons
I finetuned the existing models on either 299x299, 304x304, 320x320, or 384x384 resolution, depending on the input size used during pretraining and the VRAM usage.
`efficientnet_b3_pruned` achieved the second highest top-1 accuracy as well as the highest epoch-1 training accuracy on my task, out of all previous EfficientNet models my 24 GB VRAM RTX 3090 could handle.
I will publish the detailed report in another model repository, including the link to the GVNS benchmarks.
This repository is only for the base model, pretrained on ImageNet, not my task.
### Carbon Emissions
Comparing all models and testing my new architectures costed roughly 504 GPU hours, over a span of 27 days. |