FredZhang7
commited on
Commit
·
2eb6d99
1
Parent(s):
a889323
update example x 3
Browse files
README.md
CHANGED
@@ -15,7 +15,7 @@ I built EfficientNetV2.5 s to outperform the existing EfficientNet b0 to b4, Eff
|
|
15 |
- Params: 16.64 M
|
16 |
- Multiply-Add Operations: 5.32 G
|
17 |
- Image size: train = 299x299 / 304x304, test = 304x304
|
18 |
-
- Classification layer: defaults to 1,000 classes
|
19 |
- **Papers:**
|
20 |
- EfficientNetV2: Smaller Models and Faster Training: https://arxiv.org/abs/2104.00298
|
21 |
- Layer-adaptive sparsity for the Magnitude-based Pruning: https://arxiv.org/abs/2010.07611
|
@@ -42,7 +42,7 @@ print_layer_stats = True # prints the statistics for each layer of the model
|
|
42 |
verbose = True # prints additional info about the MAC calculation
|
43 |
|
44 |
# Download the model. Skip this step if already downloaded
|
45 |
-
base_model = "efficientnetv2.
|
46 |
url = f"https://huggingface.co/FredZhang7/efficientnetv2.5_rw_s/resolve/main/{model_name}.pth"
|
47 |
file_name = f"./{base_model}.pth"
|
48 |
urllib.request.urlretrieve(url, file_name)
|
@@ -52,8 +52,8 @@ model.classifier = torch.nn.Linear(in_features=1984, out_features=nclass, bias=T
|
|
52 |
macs, nparams = get_model_complexity_info(model, input_size, as_strings=False, print_per_layer_stat=print_layer_stats, verbose=verbose)
|
53 |
traced_model = torch.jit.trace(model, example_inputs)
|
54 |
|
55 |
-
|
56 |
-
traced_model.save(
|
57 |
|
58 |
# Load the trainable model
|
59 |
model = torch.load(model_name)
|
|
|
15 |
- Params: 16.64 M
|
16 |
- Multiply-Add Operations: 5.32 G
|
17 |
- Image size: train = 299x299 / 304x304, test = 304x304
|
18 |
+
- Classification layer: defaults to 1,000 classes
|
19 |
- **Papers:**
|
20 |
- EfficientNetV2: Smaller Models and Faster Training: https://arxiv.org/abs/2104.00298
|
21 |
- Layer-adaptive sparsity for the Magnitude-based Pruning: https://arxiv.org/abs/2010.07611
|
|
|
42 |
verbose = True # prints additional info about the MAC calculation
|
43 |
|
44 |
# Download the model. Skip this step if already downloaded
|
45 |
+
base_model = "efficientnetv2.5_base_in1k.pth"
|
46 |
url = f"https://huggingface.co/FredZhang7/efficientnetv2.5_rw_s/resolve/main/{model_name}.pth"
|
47 |
file_name = f"./{base_model}.pth"
|
48 |
urllib.request.urlretrieve(url, file_name)
|
|
|
52 |
macs, nparams = get_model_complexity_info(model, input_size, as_strings=False, print_per_layer_stat=print_layer_stats, verbose=verbose)
|
53 |
traced_model = torch.jit.trace(model, example_inputs)
|
54 |
|
55 |
+
model_name = f'{base_model}_{"{:.2f}".format(nparams / 1e6)}M_{"{:.2f}".format(macs / 1e9)}G.pth'
|
56 |
+
traced_model.save(model_name)
|
57 |
|
58 |
# Load the trainable model
|
59 |
model = torch.load(model_name)
|