File size: 8,737 Bytes
1a10833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#!/usr/bin/env python3
#############################################################
# eval.sh contains the commands to run evaluation properly
############################################################
import argparse
import sys
import re
from typing import Dict

import torch
from datasets import Audio, Dataset, load_dataset, load_metric

from pyctcdecode import BeamSearchDecoderCTC
from transformers import AutoFeatureExtractor, AutoTokenizer, pipeline
import transformers

import Levenshtein
import hunspell
dutch_unigrams = set(open('language_model/unigrams.txt').read().splitlines())
dutch_hobj = hunspell.HunSpell('dictionaries/nl.dic', 'dictionaries/nl.aff')
MOST_COMMON_WORDS = 'ik|je|het|de|is|dat|een|niet|en|wat|van|we|in|ze|op|te|hij|zijn|er|maar|me|die|heb|voor|met|als|ben|was|n|mijn|u|dit|aan|hier|om|naar|dan|jij|weet|ja|kan|geen|zo|nog|wil|wel|moet|goed|hem|hebben|nee|heeft|waar|nu|hoe|ga|t|kom|uit|gaan|bent|haar|doen|ook|mij|over|of|daar|zou|al|jullie|bij|ons|zal|gaat|hebt|meer|waarom|iets|laat|deze|had|doe|wie|jou|moeten|alles|denk|kunnen|eens|echt|man|weg|door|oké|toch|zien|alleen|s|nou'.split('|')

def log_results(result: Dataset, args: Dict[str, str]):
    """DO NOT CHANGE. This function computes and logs the result metrics."""

    log_outputs = args.log_outputs
    dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])

    # load metric
    wer = load_metric("wer")
    cer = load_metric("cer")

    # compute metrics
    wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
    cer_result = cer.compute(references=result["target"], predictions=result["prediction"])

    # print & log results
    result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
    print(result_str)

    with open(f"{dataset_id}_eval_results.txt", "w") as f:
        f.write(result_str)

    # log all results in text file. Possibly interesting for analysis
    if log_outputs is not None:
        pred_file = f"log_{dataset_id}_predictions.txt"
        target_file = f"log_{dataset_id}_targets.txt"

        with open(pred_file, "w") as p, open(target_file, "w") as t:

            # mapping function to write output
            def write_to_file(batch, i):
                p.write(f"{i}" + "\n")
                p.write(batch["prediction"] + "\n")
                t.write(f"{i}" + "\n")
                t.write(batch["target"] + "\n")

            result.map(write_to_file, with_indices=True)


def normalize_text(text: str) -> str:
    """DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""

    chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]'  # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training

    text = re.sub(chars_to_ignore_regex, "", text.lower())
    text = re.sub(r'[\n\s]+', ' ', text)
        
    return text


def main(args):
    # load dataset
    dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)

    # for testing: only process the first two examples as a test
    # dataset = dataset.select(range(10))

    # load processor
    feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
    sampling_rate = feature_extractor.sampling_rate

    # resample audio
    dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))

    # load eval pipeline
    if args.device is None:
        args.device = 0 if torch.cuda.is_available() else -1

    config = transformers.PretrainedConfig.from_pretrained(args.model_id)
    model=transformers.Wav2Vec2ForCTC.from_pretrained(args.model_id)
    tokenizer = AutoTokenizer.from_pretrained(args.model_id)
    processor = transformers.AutoProcessor.from_pretrained(args.model_id)
    language_model = BeamSearchDecoderCTC.model_container[processor.decoder._model_key]._kenlm_model
    #asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
    asr = pipeline("automatic-speech-recognition", config=config, model=model, tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=processor.decoder, device=args.device)
    
    # map function to decode audio
    def map_to_pred(batch):
        prediction = asr(
            batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
        )
        
        text = prediction["text"]
        
        #print('### STARTING TO FIND TYPOS')
        
        text_words = text.split(' ')
        is_known_word = lambda word: (len(word) == 0) or (word in dutch_unigrams) or (dutch_hobj.spell(word))
        for index in range(len(text_words)):
            
            curr_word = text_words[index]
            if is_known_word(curr_word): continue
            
            prev_word = text_words[index-1] if index>0 else '<s>'
            next_word = text_words[index+1] if index<len(text_words)-1 else '</s>'
            
            BASE_PENALITY = -2
            EDIT_PENALITY = -0.5
            
            curr_word_letters = curr_word.replace("-",'').replace("'",'')
            
            best_word = curr_word
            best_score = language_model.score(prev_word + ' ' + curr_word + ' ' + next_word) + BASE_PENALITY
            #print(prev_word + ' ' + curr_word + ' ' + next_word + ' == ' + str(best_score))
            
            # typos suggestions by hunspell
            all_suggestions = list(dutch_hobj.suggest(curr_word))
            
            # diphtongs flattened: a common faillure mode of pyctcdecode for dutch
            if curr_word.endswith('lik'):
                all_suggestions.append(curr_word[0:-3] + 'lijk')
            
            # words merged: a common failure mode of pyctcdecode for dutch
            for most_common_word in MOST_COMMON_WORDS:
                if curr_word.endswith(most_common_word):
                    all_suggestions.append(curr_word[0:-len(most_common_word)] + ' ' + most_common_word)
            
            # look at all the suggestions and see if somethings look better
            for sugg_word in all_suggestions:
                sugg_word = sugg_word.lower()
                #if sugg_word == curr_word or sugg_word == best_word: continue
                sugg_word_letters = sugg_word.replace("-",'').replace("'",'')
                sugg_distance = Levenshtein.distance(curr_word_letters, sugg_word_letters)
                sugg_distance = sugg_distance if sugg_distance > 0 else -3 # bonus for perfect match
                sugg_score = language_model.score(prev_word + ' ' + sugg_word + ' ' + next_word) + EDIT_PENALITY * sugg_distance
                #print(prev_word + ' ' + sugg_word + ' ' + next_word + ' == ' + str(sugg_score))
                if sugg_score > best_score: 
                    best_score = sugg_score
                    best_word = sugg_word
            
            if best_word != curr_word:
                text_words[index] = best_word
                #print(curr_word + ' ===> ' + best_word)
            
        #print('### DONE FINDING TYPOS')
        
        text = " ".join(text_words)

        batch["prediction"] = text
        batch["target"] = normalize_text(batch["sentence"])
        return batch

    # run inference on all examples
    result = dataset.map(map_to_pred, remove_columns=dataset.column_names)

    # compute and log_results
    # do not change function below
    log_results(result, args)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
    )
    parser.add_argument(
        "--dataset",
        type=str,
        required=True,
        help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
    )
    parser.add_argument(
        "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'`  for Common Voice"
    )
    parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
    parser.add_argument(
        "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
    )
    parser.add_argument(
        "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
    )
    parser.add_argument(
        "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
    )
    parser.add_argument(
        "--device",
        type=int,
        default=None,
        help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
    )
    args = parser.parse_args()

    main(args)