Funnyworld1412 commited on
Commit
dafc064
·
verified ·
1 Parent(s): e746c5e

Add SetFit ABSA model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - absa
6
+ - sentence-transformers
7
+ - text-classification
8
+ - generated_from_setfit_trainer
9
+ base_model: firqaaa/indo-setfit-absa-bert-base-restaurants-polarity
10
+ metrics:
11
+ - accuracy
12
+ widget:
13
+ - text: game sebenernya bagus storynya mapnya grafis pemandangan:game sebenernya bagus
14
+ storynya mapnya grafis pemandangan alamnya bagus kesalahan game sistem farmingnya
15
+ yg bikin frustasi player grindingnya bikin pusing yg lakuin ya sih maaf ya game
16
+ ga sebagus
17
+ - text: story grafik kecewa reward player gak berubah:game nya bagus story grafik
18
+ kecewa reward player gak berubah rilis nambah sih apresiasi player bermain game
19
+ contoh nya 3x pull tarikan gacha mengenang 3 bermain game jujur mengecewakan player
20
+ gak anggap download pikir karna game kikir
21
+ - text: hoyoverse ngurusin ni game seru d:game debes yg gwe temuin ampe gameplay seru
22
+ story mantul map luas bgt grapik salutlah ama hoyoverse coba klo hoyoverse ngurusin
23
+ ni game seru d
24
+ - text: penggunaan data terlalau besarr anjj:penggunaan data terlalau besarr anjj
25
+ sekalii
26
+ - text: story rate 8 10:story rate 8 10 permainan yng bagus gacha bansos 10 100
27
+ pipeline_tag: text-classification
28
+ inference: false
29
+ ---
30
+
31
+ # SetFit Polarity Model with firqaaa/indo-setfit-absa-bert-base-restaurants-polarity
32
+
33
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [firqaaa/indo-setfit-absa-bert-base-restaurants-polarity](https://huggingface.co/firqaaa/indo-setfit-absa-bert-base-restaurants-polarity) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
34
+
35
+ The model has been trained using an efficient few-shot learning technique that involves:
36
+
37
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
38
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
39
+
40
+ This model was trained within the context of a larger system for ABSA, which looks like so:
41
+
42
+ 1. Use a spaCy model to select possible aspect span candidates.
43
+ 2. Use a SetFit model to filter these possible aspect span candidates.
44
+ 3. **Use this SetFit model to classify the filtered aspect span candidates.**
45
+
46
+ ## Model Details
47
+
48
+ ### Model Description
49
+ - **Model Type:** SetFit
50
+ - **Sentence Transformer body:** [firqaaa/indo-setfit-absa-bert-base-restaurants-polarity](https://huggingface.co/firqaaa/indo-setfit-absa-bert-base-restaurants-polarity)
51
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
52
+ - **spaCy Model:** id_core_news_trf
53
+ - **SetFitABSA Aspect Model:** [Funnyworld1412/ABSA_review_game_genshin_impact-aspect](https://huggingface.co/Funnyworld1412/ABSA_review_game_genshin_impact-aspect)
54
+ - **SetFitABSA Polarity Model:** [Funnyworld1412/ABSA_review_game_genshin_impact-polarity](https://huggingface.co/Funnyworld1412/ABSA_review_game_genshin_impact-polarity)
55
+ - **Maximum Sequence Length:** 8192 tokens
56
+ - **Number of Classes:** 2 classes
57
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
58
+ <!-- - **Language:** Unknown -->
59
+ <!-- - **License:** Unknown -->
60
+
61
+ ### Model Sources
62
+
63
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
64
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
65
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
66
+
67
+ ### Model Labels
68
+ | Label | Examples |
69
+ |:--------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
70
+ | negatif | <ul><li>'kebanyakan npc teyvat story utama mc dilupain:saranku developer menciptakan story menarik kehilangan player player yg bertahan repetitif monoton update size gede doang yg isinya chest itupun sampah puzzle yg rumit chest nya sampah story kebanyakan npc teyvat story utama mc dilupain gak difokusin map kalo udah kosong ya nyampah bikin size gede doang main 3 monoton perkembangan buruk'</li><li>'tolong ditambah reward gachanya player kesulitan:tolong ditambah reward gachanya player kesulitan primo quest eksplorasi 100 dasar developer kapitalis game monoton ramah player kekurangan bahan gacha karakter'</li><li>'gitu aja sampek event selesai primogemnya 10:cuman saran pelit biar player gak kabur game sebelah hadiah event quest perbaiki udah nunggu event hadiah cuman gitu gitu aja sampek event selesai primogemnya 10 pull gacha gak tingakat kesulitan beda hadiah main kabur kalok pelit 1 jariang mohon perbaiki server indonya trimaksih'</li></ul> |
71
+ | positif | <ul><li>'gameplay nya menarik story:gameplay nya menarik story questnya bikin boring menyelesaikan quest kepala frustasi karna dialog gak ngotak panjangnya gak skip developer pelit hadiah senang bermain game karna kikirannya puzzle nya questnya otak pusing developer respon bug tunggu viral bug nya benerin'</li><li>'selebihnya bagus cerita story sound effect tampilan:tolong pelit hoyoverse pemain pemain yg yg main karna pemain suka gratisan ntah artefak primoge character item karna jujur pemain puas gamenya upgrade character kumpulan item yg kebanyakan susah pemain kekurangan game selebihnya bagus cerita story sound effect tampilan didalam game yg lumayan bagus'</li><li>'bagus cerita story sound effect tampilan didalam game:tolong pelit hoyoverse pemain pemain yg yg main karna pemain suka gratisan ntah artefak primoge character item karna jujur pemain puas gamenya upgrade character kumpulan item yg kebanyakan susah pemain kekurangan game selebihnya bagus cerita story sound effect tampilan didalam game yg lumayan bagus'</li></ul> |
72
+
73
+ ## Uses
74
+
75
+ ### Direct Use for Inference
76
+
77
+ First install the SetFit library:
78
+
79
+ ```bash
80
+ pip install setfit
81
+ ```
82
+
83
+ Then you can load this model and run inference.
84
+
85
+ ```python
86
+ from setfit import AbsaModel
87
+
88
+ # Download from the 🤗 Hub
89
+ model = AbsaModel.from_pretrained(
90
+ "Funnyworld1412/ABSA_review_game_genshin_impact-aspect",
91
+ "Funnyworld1412/ABSA_review_game_genshin_impact-polarity",
92
+ )
93
+ # Run inference
94
+ preds = model("The food was great, but the venue is just way too busy.")
95
+ ```
96
+
97
+ <!--
98
+ ### Downstream Use
99
+
100
+ *List how someone could finetune this model on their own dataset.*
101
+ -->
102
+
103
+ <!--
104
+ ### Out-of-Scope Use
105
+
106
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
107
+ -->
108
+
109
+ <!--
110
+ ## Bias, Risks and Limitations
111
+
112
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
113
+ -->
114
+
115
+ <!--
116
+ ### Recommendations
117
+
118
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
119
+ -->
120
+
121
+ ## Training Details
122
+
123
+ ### Training Set Metrics
124
+ | Training set | Min | Median | Max |
125
+ |:-------------|:----|:--------|:----|
126
+ | Word count | 7 | 31.0185 | 70 |
127
+
128
+ | Label | Training Sample Count |
129
+ |:--------|:----------------------|
130
+ | konflik | 0 |
131
+ | negatif | 208 |
132
+ | netral | 0 |
133
+ | positif | 116 |
134
+
135
+ ### Training Hyperparameters
136
+ - batch_size: (4, 4)
137
+ - num_epochs: (1, 1)
138
+ - max_steps: -1
139
+ - sampling_strategy: oversampling
140
+ - num_iterations: 10
141
+ - body_learning_rate: (2e-05, 1e-05)
142
+ - head_learning_rate: 0.01
143
+ - loss: CosineSimilarityLoss
144
+ - distance_metric: cosine_distance
145
+ - margin: 0.25
146
+ - end_to_end: False
147
+ - use_amp: False
148
+ - warmup_proportion: 0.1
149
+ - seed: 42
150
+ - eval_max_steps: -1
151
+ - load_best_model_at_end: False
152
+
153
+ ### Training Results
154
+ | Epoch | Step | Training Loss | Validation Loss |
155
+ |:------:|:----:|:-------------:|:---------------:|
156
+ | 0.0006 | 1 | 0.2317 | - |
157
+ | 0.0309 | 50 | 0.0253 | - |
158
+ | 0.0617 | 100 | 0.0008 | - |
159
+ | 0.0926 | 150 | 0.4789 | - |
160
+ | 0.1235 | 200 | 0.0215 | - |
161
+ | 0.1543 | 250 | 0.0012 | - |
162
+ | 0.1852 | 300 | 0.1843 | - |
163
+ | 0.2160 | 350 | 0.0014 | - |
164
+ | 0.2469 | 400 | 0.0013 | - |
165
+ | 0.2778 | 450 | 0.0012 | - |
166
+ | 0.3086 | 500 | 0.0016 | - |
167
+ | 0.3395 | 550 | 0.0004 | - |
168
+ | 0.3704 | 600 | 0.0006 | - |
169
+ | 0.4012 | 650 | 0.0017 | - |
170
+ | 0.4321 | 700 | 0.0012 | - |
171
+ | 0.4630 | 750 | 0.0005 | - |
172
+ | 0.4938 | 800 | 0.0003 | - |
173
+ | 0.5247 | 850 | 0.0004 | - |
174
+ | 0.5556 | 900 | 0.0006 | - |
175
+ | 0.5864 | 950 | 0.2368 | - |
176
+ | 0.6173 | 1000 | 0.0003 | - |
177
+ | 0.6481 | 1050 | 0.0005 | - |
178
+ | 0.6790 | 1100 | 0.0006 | - |
179
+ | 0.7099 | 1150 | 0.0008 | - |
180
+ | 0.7407 | 1200 | 0.0924 | - |
181
+ | 0.7716 | 1250 | 0.0003 | - |
182
+ | 0.8025 | 1300 | 0.0003 | - |
183
+ | 0.8333 | 1350 | 0.0003 | - |
184
+ | 0.8642 | 1400 | 0.0006 | - |
185
+ | 0.8951 | 1450 | 0.0005 | - |
186
+ | 0.9259 | 1500 | 0.0004 | - |
187
+ | 0.9568 | 1550 | 0.0003 | - |
188
+ | 0.9877 | 1600 | 0.0002 | - |
189
+ | 1.0 | 1620 | - | 0.1328 |
190
+
191
+ ### Framework Versions
192
+ - Python: 3.10.13
193
+ - SetFit: 1.0.3
194
+ - Sentence Transformers: 3.0.1
195
+ - spaCy: 3.7.5
196
+ - Transformers: 4.36.2
197
+ - PyTorch: 2.1.2
198
+ - Datasets: 2.19.2
199
+ - Tokenizers: 0.15.2
200
+
201
+ ## Citation
202
+
203
+ ### BibTeX
204
+ ```bibtex
205
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
206
+ doi = {10.48550/ARXIV.2209.11055},
207
+ url = {https://arxiv.org/abs/2209.11055},
208
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
209
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
210
+ title = {Efficient Few-Shot Learning Without Prompts},
211
+ publisher = {arXiv},
212
+ year = {2022},
213
+ copyright = {Creative Commons Attribution 4.0 International}
214
+ }
215
+ ```
216
+
217
+ <!--
218
+ ## Glossary
219
+
220
+ *Clearly define terms in order to be accessible across audiences.*
221
+ -->
222
+
223
+ <!--
224
+ ## Model Card Authors
225
+
226
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
227
+ -->
228
+
229
+ <!--
230
+ ## Model Card Contact
231
+
232
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
233
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Funnyworld1412/ABSA_game_squad_busters-polarity",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.36.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.36.2",
5
+ "pytorch": "2.1.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "span_context": 3,
3
+ "spacy_model": "id_core_news_trf",
4
+ "normalize_embeddings": false,
5
+ "labels": [
6
+ "konflik",
7
+ "negatif",
8
+ "netral",
9
+ "positif"
10
+ ]
11
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ad400629ec30d5fc90e7d782ac789139a1afbcdae9c108016e7015e6cb64393
3
+ size 2271064456
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db784896ad0e2bd2d2b2efb009a66fe570073d7d24e14ad09c46a76a2350fb06
3
+ size 9087
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1af481bd08ed9347cf9d3d07c24e5de75a10983819de076436400609e6705686
3
+ size 17083075
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 8192,
50
+ "model_max_length": 8192,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "sp_model_kwargs": {},
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }