GBaker commited on
Commit
e1b8a08
·
1 Parent(s): 193fe79

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: biolinkbert-base-medqa-usmle-MPNet-context
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # biolinkbert-base-medqa-usmle-MPNet-context
16
+
17
+ This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.4506
20
+ - Accuracy: 0.3936
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 1e-05
40
+ - train_batch_size: 4
41
+ - eval_batch_size: 4
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 8
44
+ - total_train_batch_size: 32
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 8
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
+ | No log | 1.0 | 318 | 1.3518 | 0.3354 |
54
+ | 1.3648 | 2.0 | 636 | 1.3308 | 0.3684 |
55
+ | 1.3648 | 3.0 | 954 | 1.3267 | 0.3943 |
56
+ | 1.2711 | 4.0 | 1272 | 1.3455 | 0.3865 |
57
+ | 1.1769 | 5.0 | 1590 | 1.3739 | 0.3943 |
58
+ | 1.1769 | 6.0 | 1908 | 1.3960 | 0.4069 |
59
+ | 1.0815 | 7.0 | 2226 | 1.4320 | 0.3959 |
60
+ | 1.0092 | 8.0 | 2544 | 1.4506 | 0.3936 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.27.2
66
+ - Pytorch 1.13.1+cu116
67
+ - Datasets 2.10.1
68
+ - Tokenizers 0.13.2