File size: 1,736 Bytes
3c6af8a
1bea949
6c21295
c287791
 
 
3c6af8a
 
c287791
f8e01ee
3c6af8a
c287791
 
ce25583
c287791
efbe2aa
c287791
3c6af8a
c287791
 
 
 
 
 
3c6af8a
 
 
c287791
3c6af8a
 
 
c287791
3c6af8a
 
 
c287791
3c6af8a
 
 
 
 
 
 
c287791
 
3c6af8a
c287791
3c6af8a
 
 
c287791
3c6af8a
 
 
 
c287791
 
 
 
 
3c6af8a
c287791
3c6af8a
c287791
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-base-cnn-swe
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-base-cnn-swe

This model is a fine-tuned version of [Gabriel/bart-base-cnn-swe](https://huggingface.co/Gabriel/bart-base-cnn-swe) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0253
- Rouge1: 22.0568
- Rouge2: 10.3302
- Rougel: 18.0648
- Rougelsum: 20.7482
- Gen Len: 19.9996

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 2.2349        | 1.0   | 17944 | 2.0643          | 21.9564 | 10.2133 | 17.9958 | 20.6502   | 19.9992 |
| 2.0726        | 2.0   | 35888 | 2.0253          | 22.0568 | 10.3302 | 18.0648 | 20.7482   | 19.9996 |


### Framework versions

- Transformers 4.22.0
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1