Galuh Sahid
commited on
Commit
·
bb13925
1
Parent(s):
d354c6f
Add code
Browse files- hybrid_clip/configuration_hybrid_clip.py +108 -0
- hybrid_clip/modeling_hybrid_clip.py +433 -0
- hybrid_clip/requirements.txt +12 -0
- hybrid_clip/run_hybrid_clip.py +976 -0
- hybrid_clip/run_hybrid_clip_backup.py +970 -0
- hybrid_clip/run_hybrid_clip_backup_2.py +971 -0
- hybrid_clip/run_training.sh +31 -0
- hybrid_clip/run_training_backup.sh +30 -0
- hybrid_clip/run_training_unfreeze.sh +31 -0
- hybrid_clip/run_training_unfreeze_2.sh +31 -0
hybrid_clip/configuration_hybrid_clip.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
|
3 |
+
from transformers.configuration_utils import PretrainedConfig
|
4 |
+
from transformers.utils import logging
|
5 |
+
|
6 |
+
|
7 |
+
logger = logging.get_logger(__name__)
|
8 |
+
|
9 |
+
|
10 |
+
class HybridCLIPConfig(PretrainedConfig):
|
11 |
+
r"""
|
12 |
+
:class:`HybridCLIPConfig` is the configuration class to store the configuration of a
|
13 |
+
:class:`~HybridCLIPModel`. It is used to instantiate HybridCLIPModel model according to the specified arguments,
|
14 |
+
defining the text model and vision model configs.
|
15 |
+
|
16 |
+
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
|
17 |
+
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
text_config_dict (:obj:`dict`):
|
21 |
+
Dictionary of configuration options that defines text model config.
|
22 |
+
vision_config_dict (:obj:`dict`):
|
23 |
+
Dictionary of configuration options that defines vison model config.
|
24 |
+
projection_dim (:obj:`int`, `optional`, defaults to 512):
|
25 |
+
Dimentionality of text and vision projection layers.
|
26 |
+
kwargs (`optional`):
|
27 |
+
Dictionary of keyword arguments.
|
28 |
+
|
29 |
+
Examples::
|
30 |
+
|
31 |
+
>>> from transformers import BertConfig, CLIPConfig, HybridCLIPConfig, FlaxHybridCLIP
|
32 |
+
|
33 |
+
>>> # Initializing a BERT and CLIP configuration
|
34 |
+
>>> config_text = BertConfig()
|
35 |
+
>>> config_vision = CLIPConfig()
|
36 |
+
|
37 |
+
>>> config = HybridCLIPConfig.from_text_vision_configs(config_text, config_vision, projection_dim=512)
|
38 |
+
|
39 |
+
>>> # Initializing a BERT and CLIPVision model
|
40 |
+
>>> model = EncoderDecoderModel(config=config)
|
41 |
+
|
42 |
+
>>> # Accessing the model configuration
|
43 |
+
>>> config_text = model.config.text_config
|
44 |
+
>>> config_vision = model.config.vision_config
|
45 |
+
|
46 |
+
>>> # Saving the model, including its configuration
|
47 |
+
>>> model.save_pretrained('my-model')
|
48 |
+
|
49 |
+
>>> # loading model and config from pretrained folder
|
50 |
+
>>> encoder_decoder_config = HybridCLIPConfig.from_pretrained('my-model')
|
51 |
+
>>> model = FlaxHybridCLIP.from_pretrained('my-model', config=encoder_decoder_config)
|
52 |
+
"""
|
53 |
+
|
54 |
+
model_type = "hybrid-clip"
|
55 |
+
is_composition = True
|
56 |
+
|
57 |
+
def __init__(self, projection_dim=512, **kwargs):
|
58 |
+
super().__init__(**kwargs)
|
59 |
+
|
60 |
+
if "text_config" not in kwargs:
|
61 |
+
raise ValueError("`text_config` can not be `None`.")
|
62 |
+
|
63 |
+
if "vision_config" not in kwargs:
|
64 |
+
raise ValueError("`vision_config` can not be `None`.")
|
65 |
+
|
66 |
+
text_config = kwargs.pop("text_config")
|
67 |
+
vision_config = kwargs.pop("vision_config")
|
68 |
+
|
69 |
+
text_model_type = text_config.pop("model_type")
|
70 |
+
vision_model_type = vision_config.pop("model_type")
|
71 |
+
|
72 |
+
from transformers import AutoConfig
|
73 |
+
|
74 |
+
self.text_config = AutoConfig.for_model(text_model_type, **text_config)
|
75 |
+
|
76 |
+
if vision_model_type == "clip":
|
77 |
+
self.vision_config = AutoConfig.for_model(vision_model_type, **vision_config).vision_config
|
78 |
+
else:
|
79 |
+
self.vision_config = AutoConfig.for_model(vision_model_type, **vision_config)
|
80 |
+
|
81 |
+
self.projection_dim = projection_dim
|
82 |
+
self.initializer_factor = 1.0
|
83 |
+
|
84 |
+
@classmethod
|
85 |
+
def from_text_vision_configs(cls, text_config: PretrainedConfig, vision_config: PretrainedConfig, **kwargs):
|
86 |
+
r"""
|
87 |
+
Instantiate a :class:`HybridCLIPConfig` (or a derived class) from text model configuration and
|
88 |
+
vision model configuration.
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
:class:`HybridCLIPConfig`: An instance of a configuration object
|
92 |
+
"""
|
93 |
+
|
94 |
+
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
95 |
+
|
96 |
+
def to_dict(self):
|
97 |
+
"""
|
98 |
+
Serializes this instance to a Python dictionary. Override the default
|
99 |
+
:meth:`~transformers.PretrainedConfig.to_dict`.
|
100 |
+
|
101 |
+
Returns:
|
102 |
+
:obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
103 |
+
"""
|
104 |
+
output = copy.deepcopy(self.__dict__)
|
105 |
+
output["text_config"] = self.text_config.to_dict()
|
106 |
+
output["vision_config"] = self.vision_config.to_dict()
|
107 |
+
output["model_type"] = self.__class__.model_type
|
108 |
+
return output
|
hybrid_clip/modeling_hybrid_clip.py
ADDED
@@ -0,0 +1,433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Optional, Tuple
|
17 |
+
|
18 |
+
import flax.linen as nn
|
19 |
+
import jax
|
20 |
+
import jax.numpy as jnp
|
21 |
+
from configuration_hybrid_clip import HybridCLIPConfig
|
22 |
+
from flax.core.frozen_dict import FrozenDict
|
23 |
+
from transformers import FLAX_MODEL_MAPPING, FlaxCLIPVisionModel
|
24 |
+
from transformers.modeling_flax_utils import FlaxPreTrainedModel
|
25 |
+
from transformers.models.clip.modeling_flax_clip import FlaxCLIPOutput
|
26 |
+
from transformers.utils import logging
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
import warnings
|
32 |
+
warnings.filterwarnings("ignore")
|
33 |
+
|
34 |
+
|
35 |
+
class FlaxHybridCLIPModule(nn.Module):
|
36 |
+
config: HybridCLIPConfig
|
37 |
+
dtype: jnp.dtype = jnp.float32
|
38 |
+
freeze_backbones: bool = False
|
39 |
+
|
40 |
+
|
41 |
+
def setup(self):
|
42 |
+
text_config = self.config.text_config
|
43 |
+
vision_config = self.config.vision_config
|
44 |
+
|
45 |
+
self.projection_dim = self.config.projection_dim
|
46 |
+
self.text_embed_dim = text_config.hidden_size
|
47 |
+
self.vision_embed_dim = vision_config.hidden_size
|
48 |
+
|
49 |
+
text_module = FLAX_MODEL_MAPPING[self.config.text_config.__class__].module_class
|
50 |
+
vision_module = FLAX_MODEL_MAPPING.get(self.config.vision_config.__class__, FlaxCLIPVisionModel).module_class
|
51 |
+
|
52 |
+
self.text_model = text_module(text_config, dtype=self.dtype)
|
53 |
+
self.vision_model = vision_module(vision_config, dtype=self.dtype)
|
54 |
+
|
55 |
+
self.visual_projection = nn.Dense(
|
56 |
+
self.projection_dim,
|
57 |
+
dtype=self.dtype,
|
58 |
+
kernel_init=jax.nn.initializers.normal(0.02, dtype=self.dtype),
|
59 |
+
use_bias=False,
|
60 |
+
)
|
61 |
+
self.text_projection = nn.Dense(
|
62 |
+
self.projection_dim,
|
63 |
+
dtype=self.dtype,
|
64 |
+
kernel_init=jax.nn.initializers.normal(0.02, dtype=self.dtype),
|
65 |
+
use_bias=False,
|
66 |
+
)
|
67 |
+
self.logit_scale = self.param("logit_scale", jax.nn.initializers.ones, []) * 20
|
68 |
+
#self.logit_scale = self.param("logit_scale", jnp.array([20.]), [], mutable=False)
|
69 |
+
#self.logit_scale = self.param("logit_scale", jax.nn.initializers.ones, [])
|
70 |
+
|
71 |
+
def __call__(
|
72 |
+
self,
|
73 |
+
input_ids=None,
|
74 |
+
pixel_values=None,
|
75 |
+
attention_mask=None,
|
76 |
+
position_ids=None,
|
77 |
+
token_type_ids=None,
|
78 |
+
deterministic: bool = True,
|
79 |
+
output_attentions=None,
|
80 |
+
output_hidden_states=None,
|
81 |
+
return_dict=None,
|
82 |
+
):
|
83 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
84 |
+
|
85 |
+
vision_outputs = self.vision_model(
|
86 |
+
pixel_values=pixel_values,
|
87 |
+
deterministic=deterministic,
|
88 |
+
output_attentions=output_attentions,
|
89 |
+
output_hidden_states=output_hidden_states,
|
90 |
+
return_dict=return_dict,
|
91 |
+
)
|
92 |
+
|
93 |
+
text_outputs = self.text_model(
|
94 |
+
input_ids=input_ids,
|
95 |
+
attention_mask=attention_mask,
|
96 |
+
token_type_ids=token_type_ids,
|
97 |
+
position_ids=position_ids,
|
98 |
+
deterministic=deterministic,
|
99 |
+
output_attentions=output_attentions,
|
100 |
+
output_hidden_states=output_hidden_states,
|
101 |
+
return_dict=return_dict,
|
102 |
+
)
|
103 |
+
|
104 |
+
image_embeds = vision_outputs[1]
|
105 |
+
if self.freeze_backbones:
|
106 |
+
image_embeds = jax.lax.stop_gradient(image_embeds)
|
107 |
+
image_embeds = self.visual_projection(image_embeds)
|
108 |
+
|
109 |
+
text_embeds = text_outputs[1]
|
110 |
+
if self.freeze_backbones:
|
111 |
+
text_embeds = jax.lax.stop_gradient(text_embeds)
|
112 |
+
text_embeds = self.text_projection(text_embeds)
|
113 |
+
|
114 |
+
# normalized features
|
115 |
+
image_embeds = image_embeds / jnp.linalg.norm(image_embeds, axis=-1, keepdims=True)
|
116 |
+
text_embeds = text_embeds / jnp.linalg.norm(text_embeds, axis=-1, keepdims=True)
|
117 |
+
|
118 |
+
# cosine similarity as logits
|
119 |
+
# logit_scale = jnp.exp(self.logit_scale)
|
120 |
+
logit_scale = jax.lax.stop_gradient(self.logit_scale)
|
121 |
+
logits_per_text = jnp.matmul(text_embeds, image_embeds.T) * logit_scale
|
122 |
+
logits_per_image = logits_per_text.T
|
123 |
+
|
124 |
+
if not return_dict:
|
125 |
+
return (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
126 |
+
|
127 |
+
return FlaxCLIPOutput(
|
128 |
+
logits_per_image=logits_per_image,
|
129 |
+
logits_per_text=logits_per_text,
|
130 |
+
text_embeds=text_embeds,
|
131 |
+
image_embeds=image_embeds,
|
132 |
+
text_model_output=text_outputs,
|
133 |
+
vision_model_output=vision_outputs,
|
134 |
+
)
|
135 |
+
|
136 |
+
|
137 |
+
class FlaxHybridCLIP(FlaxPreTrainedModel):
|
138 |
+
config_class = HybridCLIPConfig
|
139 |
+
module_class = FlaxHybridCLIPModule
|
140 |
+
|
141 |
+
def __init__(
|
142 |
+
self,
|
143 |
+
config: HybridCLIPConfig,
|
144 |
+
input_shape: Optional[Tuple] = None,
|
145 |
+
seed: int = 0,
|
146 |
+
dtype: jnp.dtype = jnp.float32,
|
147 |
+
**kwargs
|
148 |
+
):
|
149 |
+
if input_shape is None:
|
150 |
+
input_shape = ((1, 1), (1, config.vision_config.image_size, config.vision_config.image_size, 3))
|
151 |
+
|
152 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
153 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype)
|
154 |
+
|
155 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
|
156 |
+
# init input tensor
|
157 |
+
input_ids = jnp.zeros(input_shape[0], dtype="i4")
|
158 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape[0])
|
159 |
+
token_type_ids = jnp.ones_like(input_ids)
|
160 |
+
attention_mask = jnp.ones_like(input_ids)
|
161 |
+
|
162 |
+
pixel_values = jax.random.normal(rng, input_shape[1])
|
163 |
+
|
164 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
165 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
166 |
+
|
167 |
+
return self.module.init(rngs, input_ids, pixel_values, attention_mask, position_ids, token_type_ids)["params"]
|
168 |
+
|
169 |
+
def __call__(
|
170 |
+
self,
|
171 |
+
input_ids,
|
172 |
+
pixel_values,
|
173 |
+
attention_mask=None,
|
174 |
+
position_ids=None,
|
175 |
+
token_type_ids=None,
|
176 |
+
params: dict = None,
|
177 |
+
dropout_rng: jax.random.PRNGKey = None,
|
178 |
+
train: bool = False,
|
179 |
+
output_attentions: Optional[bool] = None,
|
180 |
+
output_hidden_states: Optional[bool] = None,
|
181 |
+
return_dict: Optional[bool] = None,
|
182 |
+
):
|
183 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
184 |
+
output_hidden_states = (
|
185 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
186 |
+
)
|
187 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
188 |
+
|
189 |
+
if position_ids is None:
|
190 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
191 |
+
|
192 |
+
if token_type_ids is None:
|
193 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
194 |
+
|
195 |
+
if attention_mask is None:
|
196 |
+
attention_mask = jnp.ones_like(input_ids)
|
197 |
+
|
198 |
+
# Handle any PRNG if needed
|
199 |
+
rngs = {}
|
200 |
+
if dropout_rng is not None:
|
201 |
+
rngs["dropout"] = dropout_rng
|
202 |
+
|
203 |
+
return self.module.apply(
|
204 |
+
{"params": params or self.params},
|
205 |
+
jnp.array(input_ids, dtype="i4"),
|
206 |
+
jnp.array(pixel_values, dtype=jnp.float32),
|
207 |
+
jnp.array(attention_mask, dtype="i4"),
|
208 |
+
jnp.array(position_ids, dtype="i4"),
|
209 |
+
jnp.array(token_type_ids, dtype="i4"),
|
210 |
+
not train,
|
211 |
+
output_attentions,
|
212 |
+
output_hidden_states,
|
213 |
+
return_dict,
|
214 |
+
rngs=rngs,
|
215 |
+
)
|
216 |
+
|
217 |
+
def get_text_features(
|
218 |
+
self,
|
219 |
+
input_ids,
|
220 |
+
attention_mask=None,
|
221 |
+
position_ids=None,
|
222 |
+
token_type_ids=None,
|
223 |
+
dropout_rng: jax.random.PRNGKey = None,
|
224 |
+
train=False,
|
225 |
+
):
|
226 |
+
r"""
|
227 |
+
Args:
|
228 |
+
input_ids (:obj:`numpy.ndarray` of shape :obj:`(batch_size, sequence_length)`):
|
229 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
230 |
+
provide it.
|
231 |
+
|
232 |
+
Indices can be obtained using :class:`~transformers.PreTrainedTokenizer`. See
|
233 |
+
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
|
234 |
+
for details.
|
235 |
+
|
236 |
+
`What are input IDs? <../glossary.html#input-ids>`__
|
237 |
+
|
238 |
+
Returns:
|
239 |
+
text_features (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, output_dim`): The text embeddings
|
240 |
+
obtained by applying the projection layer to the pooled output of text model.
|
241 |
+
"""
|
242 |
+
if position_ids is None:
|
243 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
244 |
+
|
245 |
+
if token_type_ids is None:
|
246 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
247 |
+
|
248 |
+
if attention_mask is None:
|
249 |
+
attention_mask = jnp.ones_like(input_ids)
|
250 |
+
|
251 |
+
# Handle any PRNG if needed
|
252 |
+
rngs = {}
|
253 |
+
if dropout_rng is not None:
|
254 |
+
rngs["dropout"] = dropout_rng
|
255 |
+
|
256 |
+
def _get_features(module, input_ids, attention_mask, position_ids, token_type_ids, deterministic):
|
257 |
+
text_outputs = module.text_model(
|
258 |
+
input_ids=input_ids,
|
259 |
+
attention_mask=attention_mask,
|
260 |
+
position_ids=position_ids,
|
261 |
+
token_type_ids=token_type_ids,
|
262 |
+
deterministic=deterministic,
|
263 |
+
)
|
264 |
+
pooled_output = text_outputs[1]
|
265 |
+
text_features = module.text_projection(pooled_output)
|
266 |
+
return text_features
|
267 |
+
|
268 |
+
return self.module.apply(
|
269 |
+
{"params": self.params},
|
270 |
+
jnp.array(input_ids, dtype="i4"),
|
271 |
+
jnp.array(attention_mask, dtype="i4"),
|
272 |
+
jnp.array(position_ids, dtype="i4"),
|
273 |
+
jnp.array(token_type_ids, dtype="i4"),
|
274 |
+
not train,
|
275 |
+
method=_get_features,
|
276 |
+
rngs=rngs,
|
277 |
+
)
|
278 |
+
|
279 |
+
def get_image_features(self, pixel_values, dropout_rng: jax.random.PRNGKey = None, train=False):
|
280 |
+
r"""
|
281 |
+
Args:
|
282 |
+
pixel_values (:obj:`numpy.ndarray` of shape :obj:`(batch_size, num_channels, height, width)`):
|
283 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained
|
284 |
+
using :class:`~transformers.ImageFeatureExtractionMixin`. See
|
285 |
+
:meth:`transformers.ImageFeatureExtractionMixin.__call__` for details.
|
286 |
+
|
287 |
+
Returns:
|
288 |
+
image_features (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, output_dim`): The image embeddings
|
289 |
+
obtained by applying the projection layer to the pooled output of vision model.
|
290 |
+
"""
|
291 |
+
|
292 |
+
# Handle any PRNG if needed
|
293 |
+
rngs = {}
|
294 |
+
if dropout_rng is not None:
|
295 |
+
rngs["dropout"] = dropout_rng
|
296 |
+
|
297 |
+
def _get_features(module, pixel_values, deterministic):
|
298 |
+
vision_outputs = module.vision_model(pixel_values=pixel_values, deterministic=deterministic)
|
299 |
+
pooled_output = vision_outputs[1] # pooled_output
|
300 |
+
image_features = module.visual_projection(pooled_output)
|
301 |
+
return image_features
|
302 |
+
|
303 |
+
return self.module.apply(
|
304 |
+
{"params": self.params},
|
305 |
+
jnp.array(pixel_values, dtype=jnp.float32),
|
306 |
+
not train,
|
307 |
+
method=_get_features,
|
308 |
+
rngs=rngs,
|
309 |
+
)
|
310 |
+
|
311 |
+
@classmethod
|
312 |
+
def from_text_vision_pretrained(
|
313 |
+
cls,
|
314 |
+
text_model_name_or_path: str = None,
|
315 |
+
vision_model_name_or_path: str = None,
|
316 |
+
*model_args,
|
317 |
+
**kwargs,
|
318 |
+
) -> FlaxPreTrainedModel:
|
319 |
+
"""
|
320 |
+
Params:
|
321 |
+
text_model_name_or_path (:obj: `str`, `optional`):
|
322 |
+
Information necessary to initiate the text model. Can be either:
|
323 |
+
|
324 |
+
- A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
|
325 |
+
Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
|
326 |
+
a user or organization name, like ``dbmdz/bert-base-german-cased``.
|
327 |
+
- A path to a `directory` containing model weights saved using
|
328 |
+
:func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
|
329 |
+
- A path or url to a `PyTorch checkpoint folder` (e.g, ``./pt_model``). In
|
330 |
+
this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided
|
331 |
+
as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in
|
332 |
+
a Flax model using the provided conversion scripts and loading the Flax model afterwards.
|
333 |
+
|
334 |
+
vision_model_name_or_path (:obj: `str`, `optional`, defaults to `None`):
|
335 |
+
Information necessary to initiate the vision model. Can be either:
|
336 |
+
|
337 |
+
- A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
|
338 |
+
Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
|
339 |
+
a user or organization name, like ``dbmdz/bert-base-german-cased``.
|
340 |
+
- A path to a `directory` containing model weights saved using
|
341 |
+
:func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
|
342 |
+
- A path or url to a `PyTorch checkpoint folder` (e.g, ``./pt_model``). In
|
343 |
+
this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided
|
344 |
+
as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in
|
345 |
+
a Flax model using the provided conversion scripts and loading the Flax model afterwards.
|
346 |
+
|
347 |
+
model_args (remaining positional arguments, `optional`):
|
348 |
+
All remaning positional arguments will be passed to the underlying model's ``__init__`` method.
|
349 |
+
|
350 |
+
kwargs (remaining dictionary of keyword arguments, `optional`):
|
351 |
+
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
|
352 |
+
:obj:`output_attentions=True`).
|
353 |
+
|
354 |
+
- To update the text configuration, use the prefix `text_` for each configuration parameter.
|
355 |
+
- To update the vision configuration, use the prefix `vision_` for each configuration parameter.
|
356 |
+
- To update the parent model configuration, do not use a prefix for each configuration parameter.
|
357 |
+
|
358 |
+
Behaves differently depending on whether a :obj:`config` is provided or automatically loaded.
|
359 |
+
|
360 |
+
Example::
|
361 |
+
|
362 |
+
>>> from transformers import FlaxHybridCLIP
|
363 |
+
>>> # initialize a model from pretrained BERT and CLIP models. Note that the projection layers will be randomly initialized.
|
364 |
+
>>> # If using CLIP's vision model the vision projection layer will be initialized using pre-trained weights
|
365 |
+
>>> model = FlaxHybridCLIP.from_text_vision_pretrained('bert-base-uncased', 'openai/clip-vit-base-patch32')
|
366 |
+
>>> # saving model after fine-tuning
|
367 |
+
>>> model.save_pretrained("./bert-clip")
|
368 |
+
>>> # load fine-tuned model
|
369 |
+
>>> model = FlaxHybridCLIP.from_pretrained("./bert-clip")
|
370 |
+
"""
|
371 |
+
|
372 |
+
kwargs_text = {
|
373 |
+
argument[len("text_") :]: value for argument, value in kwargs.items() if argument.startswith("text_")
|
374 |
+
}
|
375 |
+
|
376 |
+
kwargs_vision = {
|
377 |
+
argument[len("vision_") :]: value for argument, value in kwargs.items() if argument.startswith("vision_")
|
378 |
+
}
|
379 |
+
|
380 |
+
# remove text, vision kwargs from kwargs
|
381 |
+
for key in kwargs_text.keys():
|
382 |
+
del kwargs["text_" + key]
|
383 |
+
for key in kwargs_vision.keys():
|
384 |
+
del kwargs["vision_" + key]
|
385 |
+
|
386 |
+
# Load and initialize the text and vision model
|
387 |
+
text_model = kwargs_text.pop("model", None)
|
388 |
+
if text_model is None:
|
389 |
+
assert (
|
390 |
+
text_model_name_or_path is not None
|
391 |
+
), "If `model` is not defined as an argument, a `text_model_name_or_path` has to be defined"
|
392 |
+
from transformers import FlaxAutoModel
|
393 |
+
|
394 |
+
if "config" not in kwargs_text:
|
395 |
+
from transformers import AutoConfig
|
396 |
+
|
397 |
+
text_config = AutoConfig.from_pretrained(text_model_name_or_path)
|
398 |
+
kwargs_text["config"] = text_config
|
399 |
+
|
400 |
+
text_model = FlaxAutoModel.from_pretrained(text_model_name_or_path, *model_args, **kwargs_text)
|
401 |
+
|
402 |
+
vision_model = kwargs_vision.pop("model", None)
|
403 |
+
if vision_model is None:
|
404 |
+
assert (
|
405 |
+
vision_model_name_or_path is not None
|
406 |
+
), "If `model` is not defined as an argument, a `vision_model_name_or_path` has to be defined"
|
407 |
+
from transformers import FlaxAutoModel
|
408 |
+
|
409 |
+
if "config" not in kwargs_vision:
|
410 |
+
from transformers import AutoConfig
|
411 |
+
|
412 |
+
vision_config = AutoConfig.from_pretrained(vision_model_name_or_path)
|
413 |
+
kwargs_vision["config"] = vision_config
|
414 |
+
|
415 |
+
vision_model = FlaxAutoModel.from_pretrained(vision_model_name_or_path, *model_args, **kwargs_vision)
|
416 |
+
|
417 |
+
# instantiate config with corresponding kwargs
|
418 |
+
dtype = kwargs.pop("dtype", jnp.float32)
|
419 |
+
config = HybridCLIPConfig.from_text_vision_configs(text_model.config, vision_model.config, **kwargs)
|
420 |
+
|
421 |
+
# init model
|
422 |
+
model = cls(config, *model_args, dtype=dtype, **kwargs)
|
423 |
+
|
424 |
+
if vision_config.model_type == "clip":
|
425 |
+
model.params["vision_model"]["vision_model"] = vision_model.params["vision_model"]
|
426 |
+
model.params["visual_projection"]["kernel"] = vision_model.params["visual_projection"]["kernel"]
|
427 |
+
else:
|
428 |
+
model.params["vision_model"] = vision_model.params
|
429 |
+
|
430 |
+
model.params["text_model"] = text_model.params
|
431 |
+
|
432 |
+
return model
|
433 |
+
|
hybrid_clip/requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
jax>=0.2.8
|
2 |
+
jaxlib>=0.1.59
|
3 |
+
flax>=0.3.4
|
4 |
+
optax>=0.0.8
|
5 |
+
-f https://download.pytorch.org/whl/torch_stable.html
|
6 |
+
torch==1.9.0+cpu
|
7 |
+
-f https://download.pytorch.org/whl/torch_stable.html
|
8 |
+
torchvision==0.10.0+cpu
|
9 |
+
comet_ml==3.12.2
|
10 |
+
python-dotenv==0.18.0
|
11 |
+
tqdm
|
12 |
+
transformers
|
hybrid_clip/run_hybrid_clip.py
ADDED
@@ -0,0 +1,976 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Team All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Training a CLIP like dual encoder models using text and vision encoders in the library.
|
18 |
+
|
19 |
+
The script can be used to train CLIP like models for languages other than english by using
|
20 |
+
a text encoder pre-trained in the desired language. Currently this script support the following vision
|
21 |
+
and text models:
|
22 |
+
Vision models: ViT(https://huggingface.co/models?filter=vit), CLIP (https://huggingface.co/models?filter=clip)
|
23 |
+
Text models: BERT, ROBERTa (https://huggingface.co/models?filter=masked-lm)
|
24 |
+
"""
|
25 |
+
|
26 |
+
import json
|
27 |
+
import logging
|
28 |
+
import os
|
29 |
+
import sys
|
30 |
+
import time
|
31 |
+
import numpy as np
|
32 |
+
from dataclasses import dataclass, field
|
33 |
+
from pathlib import Path
|
34 |
+
from typing import Callable, Optional
|
35 |
+
import shutil
|
36 |
+
import gc
|
37 |
+
import pyarrow as pa
|
38 |
+
|
39 |
+
try:
|
40 |
+
from dotenv import load_dotenv
|
41 |
+
load_dotenv("../.env")
|
42 |
+
except:
|
43 |
+
print("Couldn't find ../.env file")
|
44 |
+
|
45 |
+
import wandb
|
46 |
+
from transformers.file_utils import PushToHubMixin
|
47 |
+
|
48 |
+
|
49 |
+
import torch
|
50 |
+
from torchvision.datasets import VisionDataset
|
51 |
+
from torchvision.io import ImageReadMode, read_image
|
52 |
+
from torchvision.transforms import (
|
53 |
+
CenterCrop,
|
54 |
+
ConvertImageDtype,
|
55 |
+
Normalize,
|
56 |
+
Resize,
|
57 |
+
ColorJitter,
|
58 |
+
RandomHorizontalFlip,
|
59 |
+
RandomRotation,
|
60 |
+
RandomCrop,
|
61 |
+
RandomAffine,
|
62 |
+
RandomPerspective,
|
63 |
+
RandomAutocontrast,
|
64 |
+
RandomEqualize,
|
65 |
+
)
|
66 |
+
from torchvision.transforms.functional import InterpolationMode
|
67 |
+
from tqdm import tqdm
|
68 |
+
|
69 |
+
import jax
|
70 |
+
import jax.numpy as jnp
|
71 |
+
import optax
|
72 |
+
import transformers
|
73 |
+
from flax import jax_utils
|
74 |
+
from flax.jax_utils import unreplicate
|
75 |
+
from flax.training import train_state
|
76 |
+
from flax.training.common_utils import get_metrics, shard, shard_prng_key
|
77 |
+
from modeling_hybrid_clip import FlaxHybridCLIP
|
78 |
+
from configuration_hybrid_clip import HybridCLIPConfig
|
79 |
+
from transformers import (
|
80 |
+
AutoTokenizer,
|
81 |
+
HfArgumentParser,
|
82 |
+
TrainingArguments,
|
83 |
+
is_tensorboard_available,
|
84 |
+
set_seed,
|
85 |
+
)
|
86 |
+
from numpy.random import default_rng
|
87 |
+
from flax.serialization import to_bytes, from_bytes
|
88 |
+
|
89 |
+
logger = logging.getLogger(__name__)
|
90 |
+
|
91 |
+
def mb_item(x):
|
92 |
+
return x.item() if hasattr(x, "item") else x
|
93 |
+
|
94 |
+
# checkpoint functions
|
95 |
+
def save_model_checkpoint(
|
96 |
+
model,
|
97 |
+
save_dir,
|
98 |
+
state,
|
99 |
+
logger,
|
100 |
+
organization,
|
101 |
+
with_opt: bool = False,
|
102 |
+
push_to_hub: bool = False,
|
103 |
+
overwrite=False,
|
104 |
+
**kwargs,
|
105 |
+
):
|
106 |
+
state = jax_utils.unreplicate(state)
|
107 |
+
#params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
108 |
+
logger.info(f"Saving Checkpoint in {save_dir}")
|
109 |
+
ckpt_save_dir = f"{save_dir}/ckpt-{mb_item(state.step)-1}"
|
110 |
+
if os.path.exists(ckpt_save_dir) and not overwrite:
|
111 |
+
logger.info("checkpoint exists, skipping overwrite")
|
112 |
+
else:
|
113 |
+
model.save_pretrained(
|
114 |
+
ckpt_save_dir, params=state.params, push_to_hub=False, **kwargs
|
115 |
+
)
|
116 |
+
if with_opt:
|
117 |
+
with open(os.path.join(ckpt_save_dir, "opt_state.msgpack"), "wb") as f:
|
118 |
+
f.write(to_bytes(state.opt_state))
|
119 |
+
with open(os.path.join(ckpt_save_dir, "training_state.json"), "w") as f:
|
120 |
+
json.dump({"step": state.step.item()}, f)
|
121 |
+
|
122 |
+
logger.info("checkpoint saved")
|
123 |
+
|
124 |
+
if push_to_hub:
|
125 |
+
repo_name = Path(save_dir).name
|
126 |
+
repo_url = PushToHubMixin._get_repo_url_from_name(
|
127 |
+
repo_name, organization=organization, private=False, use_auth_token=True
|
128 |
+
)
|
129 |
+
repo = PushToHubMixin._create_or_get_repo(
|
130 |
+
save_dir,
|
131 |
+
repo_url=repo_url,
|
132 |
+
organization=organization,
|
133 |
+
use_auth_token=True,
|
134 |
+
)
|
135 |
+
commit_message = f"Saving weights and logs at step {mb_item(state.step)-1}"
|
136 |
+
url = PushToHubMixin._push_to_hub(repo=repo, commit_message=commit_message)
|
137 |
+
logger.info(f"Model pushed to the hub in this commit: {url}")
|
138 |
+
|
139 |
+
|
140 |
+
def restore_model_checkpoint(save_dir, state, logger):
|
141 |
+
logger.info(f"Restoring checkpoint from {save_dir}.")
|
142 |
+
with open(os.path.join(save_dir, "flax_model.msgpack"), "rb") as f:
|
143 |
+
params = from_bytes(state.params, f.read())
|
144 |
+
|
145 |
+
with open(os.path.join(save_dir, "opt_state.msgpack"), "rb") as f:
|
146 |
+
opt_state = from_bytes(state.opt_state, f.read())
|
147 |
+
|
148 |
+
with open(os.path.join(save_dir, "training_state.json"), "r") as f:
|
149 |
+
training_state = json.load(f)
|
150 |
+
step = training_state["step"]
|
151 |
+
|
152 |
+
logger.info("checkpoint restored")
|
153 |
+
# return state.replace(step=step, params=params, opt_state=opt_state), step
|
154 |
+
return params, opt_state, step
|
155 |
+
|
156 |
+
|
157 |
+
def rotate_checkpoints(ckpt_dir: str, save_total_limit: int, logger):
|
158 |
+
"Removes older checkpoints so that `save_total_limit` checkpoints are kept"
|
159 |
+
# TODO: what to remove is decided using step number only, we might want to improve that
|
160 |
+
ckpts = [str(x) for x in Path(ckpt_dir).glob("ckpt-*")]
|
161 |
+
# sort checkpoints by step
|
162 |
+
ckpts_sorted = sorted(ckpts, key=lambda x: int(x.split("-")[-1]))
|
163 |
+
ckpts_to_delete = ckpts_sorted[:-save_total_limit]
|
164 |
+
for ckpt in ckpts_to_delete:
|
165 |
+
logger.info(
|
166 |
+
f"Deleting older checkpoint [{ckpt}] due to save_total_limit ({save_total_limit})"
|
167 |
+
)
|
168 |
+
shutil.rmtree(ckpt)
|
169 |
+
|
170 |
+
# Cache the result
|
171 |
+
has_tensorboard = is_tensorboard_available()
|
172 |
+
if has_tensorboard:
|
173 |
+
try:
|
174 |
+
from flax.metrics.tensorboard import SummaryWriter
|
175 |
+
except ImportError as ie:
|
176 |
+
has_tensorboard = False
|
177 |
+
print(
|
178 |
+
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
|
179 |
+
)
|
180 |
+
|
181 |
+
else:
|
182 |
+
print(
|
183 |
+
"Unable to display metrics through TensorBoard because the package is not installed: "
|
184 |
+
"Please run pip install tensorboard to enable."
|
185 |
+
)
|
186 |
+
|
187 |
+
|
188 |
+
@dataclass
|
189 |
+
class ModelArguments:
|
190 |
+
"""
|
191 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
|
192 |
+
"""
|
193 |
+
|
194 |
+
text_model_name_or_path: str = field(
|
195 |
+
metadata={
|
196 |
+
"help": "The text model checkpoint for weights initialization."
|
197 |
+
"Don't set if you want to train a model from scratch."
|
198 |
+
},
|
199 |
+
)
|
200 |
+
vision_model_name_or_path: str = field(
|
201 |
+
metadata={
|
202 |
+
"help": "The vision model checkpoint for weights initialization."
|
203 |
+
"Don't set if you want to train a model from scratch."
|
204 |
+
},
|
205 |
+
)
|
206 |
+
from_pt: bool = field(
|
207 |
+
default=True,
|
208 |
+
metadata={
|
209 |
+
"help": "whether to load the text and vision model using PyTorch checkpoints."
|
210 |
+
},
|
211 |
+
)
|
212 |
+
config_name: Optional[str] = field(
|
213 |
+
default=None,
|
214 |
+
metadata={
|
215 |
+
"help": "Pretrained config name or path if not the same as model_name"
|
216 |
+
},
|
217 |
+
)
|
218 |
+
tokenizer_name: Optional[str] = field(
|
219 |
+
default=None,
|
220 |
+
metadata={
|
221 |
+
"help": "Pretrained tokenizer name or path if not the same as model_name"
|
222 |
+
},
|
223 |
+
)
|
224 |
+
cache_dir: Optional[str] = field(
|
225 |
+
default=None,
|
226 |
+
metadata={
|
227 |
+
"help": "Where do you want to store the pretrained models downloaded from s3"
|
228 |
+
},
|
229 |
+
)
|
230 |
+
use_fast_tokenizer: bool = field(
|
231 |
+
default=True,
|
232 |
+
metadata={
|
233 |
+
"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."
|
234 |
+
},
|
235 |
+
)
|
236 |
+
dtype: Optional[str] = field(
|
237 |
+
default="float32",
|
238 |
+
metadata={
|
239 |
+
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
|
240 |
+
},
|
241 |
+
)
|
242 |
+
|
243 |
+
|
244 |
+
@dataclass
|
245 |
+
class DataTrainingArguments:
|
246 |
+
"""
|
247 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
248 |
+
"""
|
249 |
+
|
250 |
+
data_dir: Optional[str] = field(
|
251 |
+
default=None, metadata={"help": "The data directory containing input files."}
|
252 |
+
)
|
253 |
+
train_file: Optional[str] = field(
|
254 |
+
default=None,
|
255 |
+
metadata={"help": "The input training data file (a jsonlines file)."},
|
256 |
+
)
|
257 |
+
validation_file: Optional[str] = field(
|
258 |
+
default=None,
|
259 |
+
metadata={"help": "An optional input evaluation data file (a jsonlines file)."},
|
260 |
+
)
|
261 |
+
max_seq_length: Optional[int] = field(
|
262 |
+
default=72,
|
263 |
+
metadata={
|
264 |
+
"help": "The maximum total input sequence length after tokenization. Sequences longer "
|
265 |
+
"than this will be truncated, sequences shorter will be padded."
|
266 |
+
},
|
267 |
+
)
|
268 |
+
max_train_samples: Optional[int] = field(
|
269 |
+
default=None,
|
270 |
+
metadata={
|
271 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
272 |
+
"value if set."
|
273 |
+
},
|
274 |
+
)
|
275 |
+
max_eval_samples: Optional[int] = field(
|
276 |
+
default=None,
|
277 |
+
metadata={
|
278 |
+
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
279 |
+
"value if set."
|
280 |
+
},
|
281 |
+
)
|
282 |
+
overwrite_cache: bool = field(
|
283 |
+
default=False,
|
284 |
+
metadata={"help": "Overwrite the cached training and evaluation sets"},
|
285 |
+
)
|
286 |
+
overwrite_cache: bool = field(
|
287 |
+
default=False,
|
288 |
+
metadata={"help": "Overwrite the cached training and evaluation sets"},
|
289 |
+
)
|
290 |
+
preprocessing_num_workers: Optional[int] = field(
|
291 |
+
default=None,
|
292 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
293 |
+
)
|
294 |
+
|
295 |
+
def __post_init__(self):
|
296 |
+
if self.train_file is None and self.validation_file is None:
|
297 |
+
raise ValueError(
|
298 |
+
"Need either a dataset name or a training/validation file."
|
299 |
+
)
|
300 |
+
else:
|
301 |
+
if self.train_file is not None:
|
302 |
+
extension = self.train_file.split(".")[-1]
|
303 |
+
assert extension == "json", "`train_file` should be a json file."
|
304 |
+
if self.validation_file is not None:
|
305 |
+
extension = self.validation_file.split(".")[-1]
|
306 |
+
assert extension == "json", "`validation_file` should be a json file."
|
307 |
+
|
308 |
+
|
309 |
+
# We use torchvision for faster image pre-processing.
|
310 |
+
# We need to ensure faster processing speed as it can become a bottleneck on TPU
|
311 |
+
class Transform(torch.nn.Module):
|
312 |
+
def __init__(self, image_size, augment=False):
|
313 |
+
super().__init__()
|
314 |
+
if not augment:
|
315 |
+
self.transforms = torch.nn.Sequential(
|
316 |
+
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
|
317 |
+
CenterCrop(image_size),
|
318 |
+
ConvertImageDtype(torch.float),
|
319 |
+
Normalize(
|
320 |
+
(0.48145466, 0.4578275, 0.40821073),
|
321 |
+
(0.26862954, 0.26130258, 0.27577711),
|
322 |
+
),
|
323 |
+
)
|
324 |
+
else:
|
325 |
+
self.transforms = torch.nn.Sequential(
|
326 |
+
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
|
327 |
+
# CenterCrop(image_size),
|
328 |
+
RandomCrop([image_size], pad_if_needed=True, padding_mode="edge"),
|
329 |
+
ColorJitter(hue=0.1),
|
330 |
+
RandomHorizontalFlip(),
|
331 |
+
# RandomRotation(15, interpolation=InterpolationMode.BILINEAR, fill=128),
|
332 |
+
RandomAffine(
|
333 |
+
degrees=15,
|
334 |
+
translate=(0.1, 0.1),
|
335 |
+
scale=(0.8, 1.2),
|
336 |
+
shear=(-15, 15, -15, 15),
|
337 |
+
interpolation=InterpolationMode.BILINEAR,
|
338 |
+
fill=127,
|
339 |
+
),
|
340 |
+
RandomPerspective(
|
341 |
+
distortion_scale=0.3,
|
342 |
+
p=0.3,
|
343 |
+
interpolation=InterpolationMode.BILINEAR,
|
344 |
+
fill=127,
|
345 |
+
),
|
346 |
+
RandomAutocontrast(p=0.3),
|
347 |
+
RandomEqualize(p=0.3),
|
348 |
+
ConvertImageDtype(torch.float),
|
349 |
+
Normalize(
|
350 |
+
(0.48145466, 0.4578275, 0.40821073),
|
351 |
+
(0.26862954, 0.26130258, 0.27577711),
|
352 |
+
),
|
353 |
+
)
|
354 |
+
|
355 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
356 |
+
with torch.no_grad():
|
357 |
+
x = self.transforms(x)
|
358 |
+
return x
|
359 |
+
|
360 |
+
|
361 |
+
class ImageTextDataset(VisionDataset):
|
362 |
+
"""
|
363 |
+
Dtaset for loading image-text data for tasks like CLIP training, Image Captioning.
|
364 |
+
|
365 |
+
Args:
|
366 |
+
root: (string): The root path where the dataset is stored
|
367 |
+
file_path: (string): Path to the file containing the image_paths and associated captions.
|
368 |
+
The expected format is jsonlines where each line is a json object containing to keys.
|
369 |
+
`image_path`: The path to the image.
|
370 |
+
`captions`: An `array` of captions.
|
371 |
+
transform (callable, optional): A function/transform that takes in an PIL image
|
372 |
+
and returns a transformed version. E.g, ``transforms.ToTensor``
|
373 |
+
target_transform (callable, optional): A function/transform that takes in the
|
374 |
+
target and transforms it.
|
375 |
+
transforms (callable, optional): A function/transform that takes input sample and its target as entry
|
376 |
+
and returns a transformed version.
|
377 |
+
"""
|
378 |
+
|
379 |
+
def __init__(
|
380 |
+
self,
|
381 |
+
root: str,
|
382 |
+
file_path: str,
|
383 |
+
captions_per_image=-1,
|
384 |
+
transform: Optional[Callable] = None,
|
385 |
+
target_transform: Optional[Callable] = None,
|
386 |
+
transforms: Optional[Callable] = None,
|
387 |
+
seed=42,
|
388 |
+
):
|
389 |
+
super().__init__(root, transforms, transform, target_transform)
|
390 |
+
with open(file_path, "r") as f:
|
391 |
+
examples = [json.loads(line) for line in f.readlines()]
|
392 |
+
#examples = pa.array([json.loads(line) for line in f.readlines()])
|
393 |
+
|
394 |
+
self.rand_generator = default_rng(seed)
|
395 |
+
|
396 |
+
self.captions = []
|
397 |
+
self.image_paths = []
|
398 |
+
|
399 |
+
for example in examples:
|
400 |
+
if captions_per_image <= -1:
|
401 |
+
self.captions.append(example["captions"])
|
402 |
+
elif captions_per_image > 0:
|
403 |
+
self.captions.append(example["captions"][:captions_per_image])
|
404 |
+
else:
|
405 |
+
raise ValueError("captions per image cannot be zero")
|
406 |
+
|
407 |
+
#self.image_paths.append(str(example["image_path"]))
|
408 |
+
self.image_paths.append(example["image_path"])
|
409 |
+
|
410 |
+
self.captions = self.captions
|
411 |
+
self.image_paths = self.image_paths
|
412 |
+
|
413 |
+
def _load_image(self, idx: int):
|
414 |
+
path = self.image_paths[idx]
|
415 |
+
im = read_image(path, mode=ImageReadMode.RGB)
|
416 |
+
return im
|
417 |
+
|
418 |
+
def _load_target(self, idx):
|
419 |
+
return str(self.rand_generator.choice(self.captions[idx]))
|
420 |
+
# if len(self.captions[idx]) > 1:
|
421 |
+
# caption_idx = np.random.randint(0, len(self.captions[idx]))
|
422 |
+
# else:
|
423 |
+
# caption_idx = 0
|
424 |
+
# return self.captions[idx][caption_idx]
|
425 |
+
|
426 |
+
def __getitem__(self, index: int):
|
427 |
+
image = self._load_image(index)
|
428 |
+
target = self._load_target(index)
|
429 |
+
|
430 |
+
if self.transforms is not None:
|
431 |
+
image, target = self.transforms(image, target)
|
432 |
+
|
433 |
+
return image, target
|
434 |
+
|
435 |
+
def __len__(self) -> int:
|
436 |
+
return len(self.captions)
|
437 |
+
|
438 |
+
|
439 |
+
class TrainState(train_state.TrainState):
|
440 |
+
dropout_rng: jnp.ndarray
|
441 |
+
|
442 |
+
def replicate(self):
|
443 |
+
return jax_utils.replicate(self).replace(
|
444 |
+
dropout_rng=shard_prng_key(self.dropout_rng)
|
445 |
+
)
|
446 |
+
|
447 |
+
def write_train_metric(summary_writer, train_metrics, train_time, step):
|
448 |
+
summary_writer.scalar("train_time", train_time, step)
|
449 |
+
|
450 |
+
train_metrics = get_metrics(train_metrics)
|
451 |
+
for key, vals in train_metrics.items():
|
452 |
+
tag = f"train_{key}"
|
453 |
+
for i, val in enumerate(vals):
|
454 |
+
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
455 |
+
|
456 |
+
|
457 |
+
def write_eval_metric(summary_writer, eval_metrics, step):
|
458 |
+
for metric_name, value in eval_metrics.items():
|
459 |
+
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
460 |
+
|
461 |
+
|
462 |
+
def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):
|
463 |
+
summary_writer.scalar("train_time", train_time, step)
|
464 |
+
|
465 |
+
train_metrics = get_metrics(train_metrics)
|
466 |
+
for key, vals in train_metrics.items():
|
467 |
+
tag = f"train_{key}"
|
468 |
+
for i, val in enumerate(vals):
|
469 |
+
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
470 |
+
|
471 |
+
for metric_name, value in eval_metrics.items():
|
472 |
+
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
473 |
+
|
474 |
+
|
475 |
+
def create_learning_rate_fn(
|
476 |
+
train_ds_size: int,
|
477 |
+
train_batch_size: int,
|
478 |
+
num_train_epochs: int,
|
479 |
+
num_warmup_steps: int,
|
480 |
+
learning_rate: float,
|
481 |
+
linear=False,
|
482 |
+
) -> Callable[[int], jnp.array]:
|
483 |
+
"""Returns a linear warmup, linear_decay learning rate function."""
|
484 |
+
steps_per_epoch = train_ds_size // train_batch_size
|
485 |
+
num_train_steps = steps_per_epoch * num_train_epochs
|
486 |
+
if linear:
|
487 |
+
warmup_fn = optax.linear_schedule(
|
488 |
+
init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps
|
489 |
+
)
|
490 |
+
decay_fn = optax.linear_schedule(
|
491 |
+
init_value=learning_rate,
|
492 |
+
end_value=0,
|
493 |
+
transition_steps=num_train_steps - num_warmup_steps,
|
494 |
+
)
|
495 |
+
else:
|
496 |
+
warmup_fn = optax.linear_schedule(
|
497 |
+
init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps
|
498 |
+
)
|
499 |
+
decay_fn = optax.cosine_decay_schedule(
|
500 |
+
init_value=learning_rate,
|
501 |
+
decay_steps=num_train_steps - num_warmup_steps,
|
502 |
+
alpha=0.0,
|
503 |
+
)
|
504 |
+
schedule_fn = optax.join_schedules(
|
505 |
+
schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]
|
506 |
+
)
|
507 |
+
return schedule_fn
|
508 |
+
|
509 |
+
|
510 |
+
def main():
|
511 |
+
parser = HfArgumentParser(
|
512 |
+
(ModelArguments, DataTrainingArguments, TrainingArguments)
|
513 |
+
)
|
514 |
+
parser.add_argument("--log_wandb", action="store_true")
|
515 |
+
parser.add_argument("--freeze_backbones", action="store_true")
|
516 |
+
parser.add_argument("--exp_name", type=str, default=None)
|
517 |
+
parser.add_argument("--run_from_checkpoint", type=str, default=None)
|
518 |
+
|
519 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
520 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
521 |
+
# let's parse it to get our arguments.
|
522 |
+
model_args, data_args, training_args = parser.parse_json_file(
|
523 |
+
json_file=os.path.abspath(sys.argv[1])
|
524 |
+
)
|
525 |
+
else:
|
526 |
+
(
|
527 |
+
model_args,
|
528 |
+
data_args,
|
529 |
+
training_args,
|
530 |
+
args,
|
531 |
+
) = parser.parse_args_into_dataclasses()
|
532 |
+
|
533 |
+
if (
|
534 |
+
os.path.exists(training_args.output_dir)
|
535 |
+
and os.listdir(training_args.output_dir)
|
536 |
+
and training_args.do_train
|
537 |
+
and not training_args.overwrite_output_dir
|
538 |
+
):
|
539 |
+
raise ValueError(
|
540 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty."
|
541 |
+
"Use --overwrite_output_dir to overcome."
|
542 |
+
)
|
543 |
+
|
544 |
+
# Make one log on every process with the configuration for debugging.
|
545 |
+
logging.basicConfig(
|
546 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
547 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
548 |
+
level=logging.INFO,
|
549 |
+
)
|
550 |
+
# Setup logging, we only want one process per machine to log things on the screen.
|
551 |
+
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
552 |
+
if jax.process_index() == 0:
|
553 |
+
transformers.utils.logging.set_verbosity_info()
|
554 |
+
else:
|
555 |
+
transformers.utils.logging.set_verbosity_error()
|
556 |
+
|
557 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
558 |
+
logger.info(f"Training/evaluation parameters {training_args}")
|
559 |
+
|
560 |
+
if model_args.tokenizer_name:
|
561 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
562 |
+
model_args.tokenizer_name,
|
563 |
+
cache_dir=model_args.cache_dir,
|
564 |
+
use_fast=model_args.use_fast_tokenizer
|
565 |
+
)
|
566 |
+
elif model_args.text_model_name_or_path:
|
567 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
568 |
+
model_args.text_model_name_or_path,
|
569 |
+
cache_dir=model_args.cache_dir,
|
570 |
+
use_fast=model_args.use_fast_tokenizer,
|
571 |
+
)
|
572 |
+
else:
|
573 |
+
raise ValueError(
|
574 |
+
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
|
575 |
+
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
576 |
+
)
|
577 |
+
|
578 |
+
|
579 |
+
if args.run_from_checkpoint is not None:
|
580 |
+
with open(f"{args.run_from_checkpoint}/config.json", "r") as fp:
|
581 |
+
config_dict = json.load(fp)
|
582 |
+
config_dict["vision_config"]["model_type"] = "clip"
|
583 |
+
config = HybridCLIPConfig(**config_dict)
|
584 |
+
model = FlaxHybridCLIP.from_pretrained(
|
585 |
+
args.run_from_checkpoint,
|
586 |
+
seed=training_args.seed,
|
587 |
+
dtype=getattr(jnp, model_args.dtype),
|
588 |
+
config=config,
|
589 |
+
freeze_backbones=args.freeze_backbones
|
590 |
+
)
|
591 |
+
else:
|
592 |
+
|
593 |
+
model = FlaxHybridCLIP.from_text_vision_pretrained(
|
594 |
+
model_args.text_model_name_or_path,
|
595 |
+
model_args.vision_model_name_or_path,
|
596 |
+
seed=training_args.seed,
|
597 |
+
dtype=getattr(jnp, model_args.dtype),
|
598 |
+
text_from_pt=False,
|
599 |
+
vision_from_pt=model_args.from_pt,
|
600 |
+
freeze_backbones=args.freeze_backbones
|
601 |
+
)
|
602 |
+
config = model.config
|
603 |
+
# set seed for torch dataloaders
|
604 |
+
set_seed(training_args.seed)
|
605 |
+
|
606 |
+
# Initialize torchvision transforms and jit them for faster processing
|
607 |
+
train_preprocess = Transform(config.vision_config.image_size, augment=True)
|
608 |
+
train_preprocess = torch.jit.script(train_preprocess)
|
609 |
+
|
610 |
+
val_preprocess = Transform(config.vision_config.image_size)
|
611 |
+
val_preprocess = torch.jit.script(val_preprocess)
|
612 |
+
|
613 |
+
# Initialize the image-text dataset
|
614 |
+
train_dataset = ImageTextDataset(
|
615 |
+
data_args.data_dir,
|
616 |
+
data_args.train_file,
|
617 |
+
captions_per_image=-1,
|
618 |
+
transform=train_preprocess,
|
619 |
+
seed=training_args.seed,
|
620 |
+
)
|
621 |
+
|
622 |
+
eval_dataset = ImageTextDataset(
|
623 |
+
data_args.data_dir,
|
624 |
+
data_args.validation_file,
|
625 |
+
captions_per_image=-1,
|
626 |
+
transform=val_preprocess,
|
627 |
+
seed=training_args.seed,
|
628 |
+
)
|
629 |
+
|
630 |
+
# Store some constant
|
631 |
+
num_epochs = int(training_args.num_train_epochs)
|
632 |
+
train_batch_size = (
|
633 |
+
int(training_args.per_device_train_batch_size) * jax.device_count()
|
634 |
+
)
|
635 |
+
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
|
636 |
+
steps_per_epoch = len(train_dataset) // train_batch_size
|
637 |
+
total_train_steps = steps_per_epoch * num_epochs
|
638 |
+
|
639 |
+
# Use collate function to tokenizer the text and convert the processed images to numpy
|
640 |
+
def collate_fn(examples):
|
641 |
+
pixel_values = (
|
642 |
+
torch.stack([example[0] for example in examples])
|
643 |
+
.permute(0, 2, 3, 1)
|
644 |
+
.numpy()
|
645 |
+
)
|
646 |
+
captions = [example[1] for example in examples]
|
647 |
+
inputs = tokenizer(
|
648 |
+
captions,
|
649 |
+
max_length=data_args.max_seq_length,
|
650 |
+
padding="max_length",
|
651 |
+
truncation=True,
|
652 |
+
return_tensors="np",
|
653 |
+
)
|
654 |
+
|
655 |
+
batch = {
|
656 |
+
"pixel_values": pixel_values,
|
657 |
+
"input_ids": inputs["input_ids"],
|
658 |
+
"attention_mask": inputs["attention_mask"],
|
659 |
+
}
|
660 |
+
|
661 |
+
return batch
|
662 |
+
|
663 |
+
# Create data loaders
|
664 |
+
train_loader = torch.utils.data.DataLoader(
|
665 |
+
train_dataset,
|
666 |
+
batch_size=train_batch_size,
|
667 |
+
shuffle=True,
|
668 |
+
num_workers=data_args.preprocessing_num_workers,
|
669 |
+
#persistent_workers=True,
|
670 |
+
drop_last=True,
|
671 |
+
collate_fn=collate_fn,
|
672 |
+
)
|
673 |
+
|
674 |
+
eval_loader = torch.utils.data.DataLoader(
|
675 |
+
eval_dataset,
|
676 |
+
batch_size=eval_batch_size,
|
677 |
+
shuffle=False,
|
678 |
+
num_workers=data_args.preprocessing_num_workers,
|
679 |
+
#persistent_workers=True,
|
680 |
+
drop_last=True,
|
681 |
+
collate_fn=collate_fn,
|
682 |
+
)
|
683 |
+
|
684 |
+
# Enable tensorboard only on the master node
|
685 |
+
if has_tensorboard and jax.process_index() == 0:
|
686 |
+
summary_writer = SummaryWriter(
|
687 |
+
log_dir=Path(training_args.output_dir).joinpath("logs").as_posix()
|
688 |
+
)
|
689 |
+
|
690 |
+
# Enable wandb
|
691 |
+
if jax.process_index() == 0 and args.log_wandb:
|
692 |
+
try:
|
693 |
+
wandb.init(
|
694 |
+
name=args.exp_name,
|
695 |
+
entity="galuh",
|
696 |
+
project="indoclip",
|
697 |
+
sync_tensorboard=True
|
698 |
+
)
|
699 |
+
wandb.config.update(training_args)
|
700 |
+
wandb.config.update(model_args)
|
701 |
+
wandb.config.update(data_args)
|
702 |
+
except ImportError as e:
|
703 |
+
print(e)
|
704 |
+
|
705 |
+
# Initialize our training
|
706 |
+
rng = jax.random.PRNGKey(training_args.seed)
|
707 |
+
rng, dropout_rng = jax.random.split(rng)
|
708 |
+
|
709 |
+
# Create learning rate schedule
|
710 |
+
if training_args.warmup_steps:
|
711 |
+
warmup_steps = training_args.warmup_steps
|
712 |
+
elif training_args.warmup_ratio:
|
713 |
+
warmup_steps = int(training_args.warmup_ratio * total_train_steps)
|
714 |
+
else:
|
715 |
+
raise RuntimeError(
|
716 |
+
"You have to specify either the warmup_steps or warmup_ratio CLI parameter"
|
717 |
+
)
|
718 |
+
|
719 |
+
decay_lr_schedule_fn = create_learning_rate_fn(
|
720 |
+
len(train_dataset),
|
721 |
+
train_batch_size,
|
722 |
+
training_args.num_train_epochs,
|
723 |
+
warmup_steps,
|
724 |
+
training_args.learning_rate,
|
725 |
+
linear=False, # set False to activate cosine annealing
|
726 |
+
)
|
727 |
+
|
728 |
+
# create adam optimizer
|
729 |
+
# optimizer = optax.adamw(
|
730 |
+
# learning_rate=decay_lr_schedule_fn,
|
731 |
+
# b1=training_args.adam_beta1,
|
732 |
+
# b2=training_args.adam_beta2,
|
733 |
+
# eps=training_args.adam_epsilon,
|
734 |
+
# weight_decay=training_args.weight_decay,
|
735 |
+
# )
|
736 |
+
|
737 |
+
optimizer = optax.chain(
|
738 |
+
optax.adaptive_grad_clip(0.01, eps=0.001),
|
739 |
+
optax.scale_by_belief(),
|
740 |
+
optax.scale_by_schedule(decay_lr_schedule_fn),
|
741 |
+
optax.scale(-1.0),
|
742 |
+
)
|
743 |
+
|
744 |
+
'''optimizer = optax.adafactor(
|
745 |
+
learning_rate=decay_lr_schedule_fn,
|
746 |
+
)'''
|
747 |
+
|
748 |
+
# Setup train state
|
749 |
+
state = TrainState.create(
|
750 |
+
apply_fn=model.__call__,
|
751 |
+
params=model.params,
|
752 |
+
tx=optimizer,
|
753 |
+
dropout_rng=dropout_rng,
|
754 |
+
)
|
755 |
+
|
756 |
+
def cross_entropy(logits, axis):
|
757 |
+
logprobs = jax.nn.log_softmax(logits, axis=axis)
|
758 |
+
nll = jnp.diag(logprobs)
|
759 |
+
ce = -jnp.mean(nll)
|
760 |
+
return ce
|
761 |
+
|
762 |
+
def clip_loss(similarity):
|
763 |
+
loss = (
|
764 |
+
cross_entropy(similarity, axis=0) + cross_entropy(similarity, axis=1)
|
765 |
+
) / 2
|
766 |
+
return loss
|
767 |
+
|
768 |
+
# Define gradient update step fn
|
769 |
+
def train_step(state, batch):
|
770 |
+
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
|
771 |
+
|
772 |
+
def compute_loss(params):
|
773 |
+
logits = state.apply_fn(
|
774 |
+
**batch, params=params, dropout_rng=dropout_rng, train=True
|
775 |
+
)[0]
|
776 |
+
loss = clip_loss(logits)
|
777 |
+
return loss
|
778 |
+
|
779 |
+
grad_fn = jax.value_and_grad(compute_loss)
|
780 |
+
loss, grad = grad_fn(state.params)
|
781 |
+
grad = jax.lax.pmean(grad, "batch")
|
782 |
+
|
783 |
+
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
|
784 |
+
|
785 |
+
metrics = {
|
786 |
+
"loss": loss,
|
787 |
+
"learning_rate": decay_lr_schedule_fn(state.step),
|
788 |
+
}
|
789 |
+
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
790 |
+
|
791 |
+
return new_state, metrics
|
792 |
+
|
793 |
+
# Define eval fn
|
794 |
+
def eval_step(params, batch):
|
795 |
+
logits = model(**batch, params=params, train=False)[0]
|
796 |
+
loss = clip_loss(logits)
|
797 |
+
|
798 |
+
# summarize metrics
|
799 |
+
metrics = {"loss": loss}
|
800 |
+
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
801 |
+
return metrics
|
802 |
+
|
803 |
+
# Create parallel version of the train and eval step
|
804 |
+
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
|
805 |
+
p_eval_step = jax.pmap(eval_step, "batch")
|
806 |
+
|
807 |
+
# Replicate the train state on each device
|
808 |
+
state = state.replicate()
|
809 |
+
|
810 |
+
logger.info("***** Running training *****")
|
811 |
+
logger.info(f" TPU = {jax.device_count()}")
|
812 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
813 |
+
logger.info(f" Num Epochs = {num_epochs}")
|
814 |
+
logger.info(
|
815 |
+
f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}"
|
816 |
+
)
|
817 |
+
logger.info(
|
818 |
+
f" Total train batch size (w. parallel & distributed) = {train_batch_size}"
|
819 |
+
)
|
820 |
+
logger.info(f" Total optimization steps = {total_train_steps}")
|
821 |
+
logger.info(f" Total warmup steps = {warmup_steps}")
|
822 |
+
|
823 |
+
train_time = 0
|
824 |
+
# Create sampling rng
|
825 |
+
rng, input_rng = jax.random.split(rng)
|
826 |
+
|
827 |
+
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
|
828 |
+
for epoch in epochs:
|
829 |
+
# ======================== Training ================================
|
830 |
+
train_start = time.time()
|
831 |
+
|
832 |
+
# Create sampling rng
|
833 |
+
rng, input_rng = jax.random.split(rng)
|
834 |
+
train_metrics = []
|
835 |
+
|
836 |
+
num_train_samples = len(train_dataset)
|
837 |
+
|
838 |
+
steps_per_epoch = len(train_dataset) // train_batch_size
|
839 |
+
train_step_progress_bar = tqdm(
|
840 |
+
total=steps_per_epoch, desc="Training...", position=1, leave=False
|
841 |
+
)
|
842 |
+
# train
|
843 |
+
for step, batch in enumerate(train_loader):
|
844 |
+
batch = shard(batch)
|
845 |
+
state, train_metric = p_train_step(state, batch)
|
846 |
+
train_metrics.append(train_metric)
|
847 |
+
|
848 |
+
train_step_progress_bar.update(1)
|
849 |
+
|
850 |
+
cur_step = epoch * (num_train_samples // train_batch_size) + step + 1
|
851 |
+
|
852 |
+
if cur_step % training_args.logging_steps == 0 and cur_step > 0:
|
853 |
+
train_time += time.time() - train_start
|
854 |
+
train_metric = unreplicate(train_metric)
|
855 |
+
|
856 |
+
# Save tensorboard metrics
|
857 |
+
if has_tensorboard and jax.process_index() == 0:
|
858 |
+
write_train_metric(
|
859 |
+
summary_writer, train_metrics, train_time, cur_step
|
860 |
+
)
|
861 |
+
|
862 |
+
# Save wandb metrics
|
863 |
+
if args.log_wandb and jax.process_index() == 0:
|
864 |
+
#_metrics = {k if k=="learning_rate" else f"train_{k}":mb_item(v.mean()) for k, v in train_metric.items()}
|
865 |
+
#_metrics = {k if k=="learning_rate" else f"train_{k}":mb_item(v.mean()) for k, v in train_metric.items()}
|
866 |
+
_metrics = {f'train_{k}': jax.device_get(v) for k,v in train_metric.items()}
|
867 |
+
wandb.log({"train_step":cur_step, **_metrics}, commit=True)
|
868 |
+
|
869 |
+
epochs.write(
|
870 |
+
f"Log at Step: {cur_step} (Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
|
871 |
+
)
|
872 |
+
|
873 |
+
logging.info("Emptying train metrics")
|
874 |
+
|
875 |
+
del train_metric
|
876 |
+
del train_metrics
|
877 |
+
train_metrics = []
|
878 |
+
|
879 |
+
gc.collect()
|
880 |
+
torch.cuda.empty_cache()
|
881 |
+
|
882 |
+
if cur_step % training_args.eval_steps == 0 and cur_step > 0:
|
883 |
+
# ======================== Evaluating ==============================
|
884 |
+
num_eval_samples = len(eval_dataset)
|
885 |
+
eval_metrics = []
|
886 |
+
eval_steps = len(eval_dataset) // eval_batch_size
|
887 |
+
eval_step_progress_bar = tqdm(
|
888 |
+
total=eval_steps, desc="Evaluating...", position=2, leave=False
|
889 |
+
)
|
890 |
+
for batch in eval_loader:
|
891 |
+
# Model forward
|
892 |
+
batch = shard(batch)
|
893 |
+
metrics = p_eval_step(state.params, batch)
|
894 |
+
eval_metrics.append(metrics)
|
895 |
+
|
896 |
+
eval_step_progress_bar.update(1)
|
897 |
+
|
898 |
+
# normalize eval metrics
|
899 |
+
eval_metrics = get_metrics(eval_metrics)
|
900 |
+
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
|
901 |
+
|
902 |
+
# Print metrics and update progress bar
|
903 |
+
desc = f"Eval at Step: {cur_step} (Loss: {eval_metrics['loss']})"
|
904 |
+
epochs.write(desc)
|
905 |
+
epochs.desc = desc
|
906 |
+
|
907 |
+
# Save tfboard eval
|
908 |
+
if has_tensorboard and jax.process_index() == 0:
|
909 |
+
write_eval_metric(summary_writer, eval_metrics, cur_step)
|
910 |
+
|
911 |
+
# Save eval wandb
|
912 |
+
if args.log_wandb and jax.process_index() == 0:
|
913 |
+
#_metrics = {f"eval_{k}":mb_item(v) for k, v in eval_metrics.items()}
|
914 |
+
_metrics = {f'eval_{k}': jax.device_get(v) for k,v in eval_metrics.items()}
|
915 |
+
wandb.log({"eval_step":cur_step, **_metrics})
|
916 |
+
|
917 |
+
logging.info("Emptying eval metrics")
|
918 |
+
del eval_metrics
|
919 |
+
|
920 |
+
eval_metrics = []
|
921 |
+
|
922 |
+
if cur_step % training_args.save_steps == 0 and cur_step > 0:
|
923 |
+
# save checkpoint after each epoch and push checkpoint to the hub
|
924 |
+
if jax.process_index() == 0:
|
925 |
+
# params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
926 |
+
# model.save_pretrained(
|
927 |
+
# training_args.output_dir,
|
928 |
+
# params=params,
|
929 |
+
# push_to_hub=training_args.push_to_hub,
|
930 |
+
# commit_message=f"Saving weights and logs of step {cur_step}",
|
931 |
+
# )
|
932 |
+
save_model_checkpoint(
|
933 |
+
model,
|
934 |
+
training_args.output_dir,
|
935 |
+
state,
|
936 |
+
logger,
|
937 |
+
training_args.push_to_hub_organization,
|
938 |
+
with_opt=True,
|
939 |
+
push_to_hub=training_args.push_to_hub,
|
940 |
+
overwrite=True,
|
941 |
+
)
|
942 |
+
# if model_args.save_optimizer:
|
943 |
+
# # this saves full state including optimizer
|
944 |
+
# save_checkpoint(training_args.output_dir, state, state.step, keep=training_args.save_total_limit, overwrite=True)
|
945 |
+
if training_args.save_total_limit is not None:
|
946 |
+
rotate_checkpoints(
|
947 |
+
training_args.output_dir,
|
948 |
+
training_args.save_total_limit,
|
949 |
+
logger,
|
950 |
+
)
|
951 |
+
|
952 |
+
train_step_progress_bar.close() #check
|
953 |
+
|
954 |
+
'''# save checkpoint after each epoch and push checkpoint to the hub
|
955 |
+
if jax.process_index() == 0:
|
956 |
+
params = jax.device_get(unreplicate(state.params))
|
957 |
+
model.save_pretrained(
|
958 |
+
training_args.output_dir + f"/{epoch+1}/",
|
959 |
+
params=params,
|
960 |
+
push_to_hub=training_args.push_to_hub,
|
961 |
+
commit_message=f"Saving weights and logs of epoch {epoch+1}",
|
962 |
+
)'''
|
963 |
+
|
964 |
+
# save model after training is over
|
965 |
+
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
966 |
+
model.save_pretrained(
|
967 |
+
training_args.output_dir,
|
968 |
+
params=params,
|
969 |
+
push_to_hub=training_args.push_to_hub,
|
970 |
+
commit_message="Add final model",
|
971 |
+
)
|
972 |
+
|
973 |
+
|
974 |
+
if __name__ == "__main__":
|
975 |
+
main()
|
976 |
+
|
hybrid_clip/run_hybrid_clip_backup.py
ADDED
@@ -0,0 +1,970 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Team All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Training a CLIP like dual encoder models using text and vision encoders in the library.
|
18 |
+
|
19 |
+
The script can be used to train CLIP like models for languages other than english by using
|
20 |
+
a text encoder pre-trained in the desired language. Currently this script support the following vision
|
21 |
+
and text models:
|
22 |
+
Vision models: ViT(https://huggingface.co/models?filter=vit), CLIP (https://huggingface.co/models?filter=clip)
|
23 |
+
Text models: BERT, ROBERTa (https://huggingface.co/models?filter=masked-lm)
|
24 |
+
"""
|
25 |
+
|
26 |
+
import json
|
27 |
+
import logging
|
28 |
+
import os
|
29 |
+
import sys
|
30 |
+
import time
|
31 |
+
import numpy as np
|
32 |
+
from dataclasses import dataclass, field
|
33 |
+
from pathlib import Path
|
34 |
+
from typing import Callable, Optional
|
35 |
+
import shutil
|
36 |
+
import gc
|
37 |
+
|
38 |
+
try:
|
39 |
+
from dotenv import load_dotenv
|
40 |
+
load_dotenv("../.env")
|
41 |
+
except:
|
42 |
+
print("Couldn't find ../.env file")
|
43 |
+
|
44 |
+
import wandb
|
45 |
+
from transformers.file_utils import PushToHubMixin
|
46 |
+
|
47 |
+
|
48 |
+
import torch
|
49 |
+
from torchvision.datasets import VisionDataset
|
50 |
+
from torchvision.io import ImageReadMode, read_image
|
51 |
+
from torchvision.transforms import (
|
52 |
+
CenterCrop,
|
53 |
+
ConvertImageDtype,
|
54 |
+
Normalize,
|
55 |
+
Resize,
|
56 |
+
ColorJitter,
|
57 |
+
RandomHorizontalFlip,
|
58 |
+
RandomRotation,
|
59 |
+
RandomCrop,
|
60 |
+
RandomAffine,
|
61 |
+
RandomPerspective,
|
62 |
+
RandomAutocontrast,
|
63 |
+
RandomEqualize,
|
64 |
+
)
|
65 |
+
from torchvision.transforms.functional import InterpolationMode
|
66 |
+
from tqdm import tqdm
|
67 |
+
|
68 |
+
import jax
|
69 |
+
import jax.numpy as jnp
|
70 |
+
import optax
|
71 |
+
import transformers
|
72 |
+
from flax import jax_utils
|
73 |
+
from flax.jax_utils import unreplicate
|
74 |
+
from flax.training import train_state
|
75 |
+
from flax.training.common_utils import get_metrics, shard, shard_prng_key
|
76 |
+
from modeling_hybrid_clip import FlaxHybridCLIP
|
77 |
+
from configuration_hybrid_clip import HybridCLIPConfig
|
78 |
+
from transformers import (
|
79 |
+
AutoTokenizer,
|
80 |
+
HfArgumentParser,
|
81 |
+
TrainingArguments,
|
82 |
+
is_tensorboard_available,
|
83 |
+
set_seed,
|
84 |
+
)
|
85 |
+
from numpy.random import default_rng
|
86 |
+
from flax.serialization import to_bytes, from_bytes
|
87 |
+
|
88 |
+
logger = logging.getLogger(__name__)
|
89 |
+
|
90 |
+
def mb_item(x):
|
91 |
+
return x.item() if hasattr(x, "item") else x
|
92 |
+
|
93 |
+
# checkpoint functions
|
94 |
+
def save_model_checkpoint(
|
95 |
+
model,
|
96 |
+
save_dir,
|
97 |
+
state,
|
98 |
+
logger,
|
99 |
+
organization,
|
100 |
+
with_opt: bool = False,
|
101 |
+
push_to_hub: bool = False,
|
102 |
+
overwrite=False,
|
103 |
+
**kwargs,
|
104 |
+
):
|
105 |
+
state = jax_utils.unreplicate(state)
|
106 |
+
#params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
107 |
+
logger.info(f"Saving Checkpoint in {save_dir}")
|
108 |
+
ckpt_save_dir = f"{save_dir}/ckpt-{mb_item(state.step)-1}"
|
109 |
+
if os.path.exists(ckpt_save_dir) and not overwrite:
|
110 |
+
logger.info("checkpoint exists, skipping overwrite")
|
111 |
+
else:
|
112 |
+
model.save_pretrained(
|
113 |
+
ckpt_save_dir, params=state.params, push_to_hub=False, **kwargs
|
114 |
+
)
|
115 |
+
if with_opt:
|
116 |
+
with open(os.path.join(ckpt_save_dir, "opt_state.msgpack"), "wb") as f:
|
117 |
+
f.write(to_bytes(state.opt_state))
|
118 |
+
with open(os.path.join(ckpt_save_dir, "training_state.json"), "w") as f:
|
119 |
+
json.dump({"step": state.step.item()}, f)
|
120 |
+
|
121 |
+
logger.info("checkpoint saved")
|
122 |
+
|
123 |
+
if push_to_hub:
|
124 |
+
repo_name = Path(save_dir).name
|
125 |
+
repo_url = PushToHubMixin._get_repo_url_from_name(
|
126 |
+
repo_name, organization=organization, private=False, use_auth_token=True
|
127 |
+
)
|
128 |
+
repo = PushToHubMixin._create_or_get_repo(
|
129 |
+
save_dir,
|
130 |
+
repo_url=repo_url,
|
131 |
+
organization=organization,
|
132 |
+
use_auth_token=True,
|
133 |
+
)
|
134 |
+
commit_message = f"Saving weights and logs at step {mb_item(state.step)-1}"
|
135 |
+
url = PushToHubMixin._push_to_hub(repo=repo, commit_message=commit_message)
|
136 |
+
logger.info(f"Model pushed to the hub in this commit: {url}")
|
137 |
+
|
138 |
+
|
139 |
+
def restore_model_checkpoint(save_dir, state, logger):
|
140 |
+
logger.info(f"Restoring checkpoint from {save_dir}.")
|
141 |
+
with open(os.path.join(save_dir, "flax_model.msgpack"), "rb") as f:
|
142 |
+
params = from_bytes(state.params, f.read())
|
143 |
+
|
144 |
+
with open(os.path.join(save_dir, "opt_state.msgpack"), "rb") as f:
|
145 |
+
opt_state = from_bytes(state.opt_state, f.read())
|
146 |
+
|
147 |
+
with open(os.path.join(save_dir, "training_state.json"), "r") as f:
|
148 |
+
training_state = json.load(f)
|
149 |
+
step = training_state["step"]
|
150 |
+
|
151 |
+
logger.info("checkpoint restored")
|
152 |
+
# return state.replace(step=step, params=params, opt_state=opt_state), step
|
153 |
+
return params, opt_state, step
|
154 |
+
|
155 |
+
|
156 |
+
def rotate_checkpoints(ckpt_dir: str, save_total_limit: int, logger):
|
157 |
+
"Removes older checkpoints so that `save_total_limit` checkpoints are kept"
|
158 |
+
# TODO: what to remove is decided using step number only, we might want to improve that
|
159 |
+
ckpts = [str(x) for x in Path(ckpt_dir).glob("ckpt-*")]
|
160 |
+
# sort checkpoints by step
|
161 |
+
ckpts_sorted = sorted(ckpts, key=lambda x: int(x.split("-")[-1]))
|
162 |
+
ckpts_to_delete = ckpts_sorted[:-save_total_limit]
|
163 |
+
for ckpt in ckpts_to_delete:
|
164 |
+
logger.info(
|
165 |
+
f"Deleting older checkpoint [{ckpt}] due to save_total_limit ({save_total_limit})"
|
166 |
+
)
|
167 |
+
shutil.rmtree(ckpt)
|
168 |
+
|
169 |
+
# Cache the result
|
170 |
+
has_tensorboard = is_tensorboard_available()
|
171 |
+
if has_tensorboard:
|
172 |
+
try:
|
173 |
+
from flax.metrics.tensorboard import SummaryWriter
|
174 |
+
except ImportError as ie:
|
175 |
+
has_tensorboard = False
|
176 |
+
print(
|
177 |
+
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
|
178 |
+
)
|
179 |
+
|
180 |
+
else:
|
181 |
+
print(
|
182 |
+
"Unable to display metrics through TensorBoard because the package is not installed: "
|
183 |
+
"Please run pip install tensorboard to enable."
|
184 |
+
)
|
185 |
+
|
186 |
+
|
187 |
+
@dataclass
|
188 |
+
class ModelArguments:
|
189 |
+
"""
|
190 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
|
191 |
+
"""
|
192 |
+
|
193 |
+
text_model_name_or_path: str = field(
|
194 |
+
metadata={
|
195 |
+
"help": "The text model checkpoint for weights initialization."
|
196 |
+
"Don't set if you want to train a model from scratch."
|
197 |
+
},
|
198 |
+
)
|
199 |
+
vision_model_name_or_path: str = field(
|
200 |
+
metadata={
|
201 |
+
"help": "The vision model checkpoint for weights initialization."
|
202 |
+
"Don't set if you want to train a model from scratch."
|
203 |
+
},
|
204 |
+
)
|
205 |
+
from_pt: bool = field(
|
206 |
+
default=True,
|
207 |
+
metadata={
|
208 |
+
"help": "whether to load the text and vision model using PyTorch checkpoints."
|
209 |
+
},
|
210 |
+
)
|
211 |
+
config_name: Optional[str] = field(
|
212 |
+
default=None,
|
213 |
+
metadata={
|
214 |
+
"help": "Pretrained config name or path if not the same as model_name"
|
215 |
+
},
|
216 |
+
)
|
217 |
+
tokenizer_name: Optional[str] = field(
|
218 |
+
default=None,
|
219 |
+
metadata={
|
220 |
+
"help": "Pretrained tokenizer name or path if not the same as model_name"
|
221 |
+
},
|
222 |
+
)
|
223 |
+
cache_dir: Optional[str] = field(
|
224 |
+
default=None,
|
225 |
+
metadata={
|
226 |
+
"help": "Where do you want to store the pretrained models downloaded from s3"
|
227 |
+
},
|
228 |
+
)
|
229 |
+
use_fast_tokenizer: bool = field(
|
230 |
+
default=True,
|
231 |
+
metadata={
|
232 |
+
"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."
|
233 |
+
},
|
234 |
+
)
|
235 |
+
dtype: Optional[str] = field(
|
236 |
+
default="float32",
|
237 |
+
metadata={
|
238 |
+
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
|
239 |
+
},
|
240 |
+
)
|
241 |
+
|
242 |
+
|
243 |
+
@dataclass
|
244 |
+
class DataTrainingArguments:
|
245 |
+
"""
|
246 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
247 |
+
"""
|
248 |
+
|
249 |
+
data_dir: Optional[str] = field(
|
250 |
+
default=None, metadata={"help": "The data directory containing input files."}
|
251 |
+
)
|
252 |
+
train_file: Optional[str] = field(
|
253 |
+
default=None,
|
254 |
+
metadata={"help": "The input training data file (a jsonlines file)."},
|
255 |
+
)
|
256 |
+
validation_file: Optional[str] = field(
|
257 |
+
default=None,
|
258 |
+
metadata={"help": "An optional input evaluation data file (a jsonlines file)."},
|
259 |
+
)
|
260 |
+
max_seq_length: Optional[int] = field(
|
261 |
+
default=72,
|
262 |
+
metadata={
|
263 |
+
"help": "The maximum total input sequence length after tokenization. Sequences longer "
|
264 |
+
"than this will be truncated, sequences shorter will be padded."
|
265 |
+
},
|
266 |
+
)
|
267 |
+
max_train_samples: Optional[int] = field(
|
268 |
+
default=None,
|
269 |
+
metadata={
|
270 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
271 |
+
"value if set."
|
272 |
+
},
|
273 |
+
)
|
274 |
+
max_eval_samples: Optional[int] = field(
|
275 |
+
default=None,
|
276 |
+
metadata={
|
277 |
+
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
278 |
+
"value if set."
|
279 |
+
},
|
280 |
+
)
|
281 |
+
overwrite_cache: bool = field(
|
282 |
+
default=False,
|
283 |
+
metadata={"help": "Overwrite the cached training and evaluation sets"},
|
284 |
+
)
|
285 |
+
overwrite_cache: bool = field(
|
286 |
+
default=False,
|
287 |
+
metadata={"help": "Overwrite the cached training and evaluation sets"},
|
288 |
+
)
|
289 |
+
preprocessing_num_workers: Optional[int] = field(
|
290 |
+
default=None,
|
291 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
292 |
+
)
|
293 |
+
|
294 |
+
def __post_init__(self):
|
295 |
+
if self.train_file is None and self.validation_file is None:
|
296 |
+
raise ValueError(
|
297 |
+
"Need either a dataset name or a training/validation file."
|
298 |
+
)
|
299 |
+
else:
|
300 |
+
if self.train_file is not None:
|
301 |
+
extension = self.train_file.split(".")[-1]
|
302 |
+
assert extension == "json", "`train_file` should be a json file."
|
303 |
+
if self.validation_file is not None:
|
304 |
+
extension = self.validation_file.split(".")[-1]
|
305 |
+
assert extension == "json", "`validation_file` should be a json file."
|
306 |
+
|
307 |
+
|
308 |
+
# We use torchvision for faster image pre-processing.
|
309 |
+
# We need to ensure faster processing speed as it can become a bottleneck on TPU
|
310 |
+
class Transform(torch.nn.Module):
|
311 |
+
def __init__(self, image_size, augment=False):
|
312 |
+
super().__init__()
|
313 |
+
if not augment:
|
314 |
+
self.transforms = torch.nn.Sequential(
|
315 |
+
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
|
316 |
+
CenterCrop(image_size),
|
317 |
+
ConvertImageDtype(torch.float),
|
318 |
+
Normalize(
|
319 |
+
(0.48145466, 0.4578275, 0.40821073),
|
320 |
+
(0.26862954, 0.26130258, 0.27577711),
|
321 |
+
),
|
322 |
+
)
|
323 |
+
else:
|
324 |
+
self.transforms = torch.nn.Sequential(
|
325 |
+
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
|
326 |
+
# CenterCrop(image_size),
|
327 |
+
RandomCrop([image_size], pad_if_needed=True, padding_mode="edge"),
|
328 |
+
ColorJitter(hue=0.1),
|
329 |
+
RandomHorizontalFlip(),
|
330 |
+
# RandomRotation(15, interpolation=InterpolationMode.BILINEAR, fill=128),
|
331 |
+
RandomAffine(
|
332 |
+
degrees=15,
|
333 |
+
translate=(0.1, 0.1),
|
334 |
+
scale=(0.8, 1.2),
|
335 |
+
shear=(-15, 15, -15, 15),
|
336 |
+
interpolation=InterpolationMode.BILINEAR,
|
337 |
+
fill=127,
|
338 |
+
),
|
339 |
+
RandomPerspective(
|
340 |
+
distortion_scale=0.3,
|
341 |
+
p=0.3,
|
342 |
+
interpolation=InterpolationMode.BILINEAR,
|
343 |
+
fill=127,
|
344 |
+
),
|
345 |
+
RandomAutocontrast(p=0.3),
|
346 |
+
RandomEqualize(p=0.3),
|
347 |
+
ConvertImageDtype(torch.float),
|
348 |
+
Normalize(
|
349 |
+
(0.48145466, 0.4578275, 0.40821073),
|
350 |
+
(0.26862954, 0.26130258, 0.27577711),
|
351 |
+
),
|
352 |
+
)
|
353 |
+
|
354 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
355 |
+
with torch.no_grad():
|
356 |
+
x = self.transforms(x)
|
357 |
+
return x
|
358 |
+
|
359 |
+
|
360 |
+
class ImageTextDataset(VisionDataset):
|
361 |
+
"""
|
362 |
+
Dtaset for loading image-text data for tasks like CLIP training, Image Captioning.
|
363 |
+
|
364 |
+
Args:
|
365 |
+
root: (string): The root path where the dataset is stored
|
366 |
+
file_path: (string): Path to the file containing the image_paths and associated captions.
|
367 |
+
The expected format is jsonlines where each line is a json object containing to keys.
|
368 |
+
`image_path`: The path to the image.
|
369 |
+
`captions`: An `array` of captions.
|
370 |
+
transform (callable, optional): A function/transform that takes in an PIL image
|
371 |
+
and returns a transformed version. E.g, ``transforms.ToTensor``
|
372 |
+
target_transform (callable, optional): A function/transform that takes in the
|
373 |
+
target and transforms it.
|
374 |
+
transforms (callable, optional): A function/transform that takes input sample and its target as entry
|
375 |
+
and returns a transformed version.
|
376 |
+
"""
|
377 |
+
|
378 |
+
def __init__(
|
379 |
+
self,
|
380 |
+
root: str,
|
381 |
+
file_path: str,
|
382 |
+
captions_per_image=-1,
|
383 |
+
transform: Optional[Callable] = None,
|
384 |
+
target_transform: Optional[Callable] = None,
|
385 |
+
transforms: Optional[Callable] = None,
|
386 |
+
seed=42,
|
387 |
+
):
|
388 |
+
super().__init__(root, transforms, transform, target_transform)
|
389 |
+
with open(file_path, "r") as f:
|
390 |
+
examples = [json.loads(line) for line in f.readlines()]
|
391 |
+
|
392 |
+
self.rand_generator = default_rng(seed)
|
393 |
+
|
394 |
+
self.captions = []
|
395 |
+
self.image_paths = []
|
396 |
+
|
397 |
+
for example in examples:
|
398 |
+
if captions_per_image <= -1:
|
399 |
+
self.captions.append(example["captions"])
|
400 |
+
elif captions_per_image > 0:
|
401 |
+
self.captions.append(example["captions"][:captions_per_image])
|
402 |
+
else:
|
403 |
+
raise ValueError("captions per image cannot be zero")
|
404 |
+
|
405 |
+
self.image_paths.append(example["image_path"])
|
406 |
+
|
407 |
+
def _load_image(self, idx: int):
|
408 |
+
path = self.image_paths[idx]
|
409 |
+
im = read_image(path, mode=ImageReadMode.RGB)
|
410 |
+
return im
|
411 |
+
|
412 |
+
def _load_target(self, idx):
|
413 |
+
return self.rand_generator.choice(self.captions[idx])
|
414 |
+
# if len(self.captions[idx]) > 1:
|
415 |
+
# caption_idx = np.random.randint(0, len(self.captions[idx]))
|
416 |
+
# else:
|
417 |
+
# caption_idx = 0
|
418 |
+
# return self.captions[idx][caption_idx]
|
419 |
+
|
420 |
+
def __getitem__(self, index: int):
|
421 |
+
image = self._load_image(index)
|
422 |
+
target = self._load_target(index)
|
423 |
+
|
424 |
+
if self.transforms is not None:
|
425 |
+
image, target = self.transforms(image, target)
|
426 |
+
|
427 |
+
return image, target
|
428 |
+
|
429 |
+
def __len__(self) -> int:
|
430 |
+
return len(self.captions)
|
431 |
+
|
432 |
+
|
433 |
+
class TrainState(train_state.TrainState):
|
434 |
+
dropout_rng: jnp.ndarray
|
435 |
+
|
436 |
+
def replicate(self):
|
437 |
+
return jax_utils.replicate(self).replace(
|
438 |
+
dropout_rng=shard_prng_key(self.dropout_rng)
|
439 |
+
)
|
440 |
+
|
441 |
+
def write_train_metric(summary_writer, train_metrics, train_time, step):
|
442 |
+
summary_writer.scalar("train_time", train_time, step)
|
443 |
+
|
444 |
+
train_metrics = get_metrics(train_metrics)
|
445 |
+
for key, vals in train_metrics.items():
|
446 |
+
tag = f"train_{key}"
|
447 |
+
for i, val in enumerate(vals):
|
448 |
+
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
449 |
+
|
450 |
+
|
451 |
+
def write_eval_metric(summary_writer, eval_metrics, step):
|
452 |
+
for metric_name, value in eval_metrics.items():
|
453 |
+
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
454 |
+
|
455 |
+
|
456 |
+
def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):
|
457 |
+
summary_writer.scalar("train_time", train_time, step)
|
458 |
+
|
459 |
+
train_metrics = get_metrics(train_metrics)
|
460 |
+
for key, vals in train_metrics.items():
|
461 |
+
tag = f"train_{key}"
|
462 |
+
for i, val in enumerate(vals):
|
463 |
+
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
464 |
+
|
465 |
+
for metric_name, value in eval_metrics.items():
|
466 |
+
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
467 |
+
|
468 |
+
|
469 |
+
def create_learning_rate_fn(
|
470 |
+
train_ds_size: int,
|
471 |
+
train_batch_size: int,
|
472 |
+
num_train_epochs: int,
|
473 |
+
num_warmup_steps: int,
|
474 |
+
learning_rate: float,
|
475 |
+
linear=False,
|
476 |
+
) -> Callable[[int], jnp.array]:
|
477 |
+
"""Returns a linear warmup, linear_decay learning rate function."""
|
478 |
+
steps_per_epoch = train_ds_size // train_batch_size
|
479 |
+
num_train_steps = steps_per_epoch * num_train_epochs
|
480 |
+
if linear:
|
481 |
+
warmup_fn = optax.linear_schedule(
|
482 |
+
init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps
|
483 |
+
)
|
484 |
+
decay_fn = optax.linear_schedule(
|
485 |
+
init_value=learning_rate,
|
486 |
+
end_value=0,
|
487 |
+
transition_steps=num_train_steps - num_warmup_steps,
|
488 |
+
)
|
489 |
+
else:
|
490 |
+
warmup_fn = optax.linear_schedule(
|
491 |
+
init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps
|
492 |
+
)
|
493 |
+
decay_fn = optax.cosine_decay_schedule(
|
494 |
+
init_value=learning_rate,
|
495 |
+
decay_steps=num_train_steps - num_warmup_steps,
|
496 |
+
alpha=0.0,
|
497 |
+
)
|
498 |
+
schedule_fn = optax.join_schedules(
|
499 |
+
schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]
|
500 |
+
)
|
501 |
+
return schedule_fn
|
502 |
+
|
503 |
+
|
504 |
+
def main():
|
505 |
+
parser = HfArgumentParser(
|
506 |
+
(ModelArguments, DataTrainingArguments, TrainingArguments)
|
507 |
+
)
|
508 |
+
parser.add_argument("--log_wandb", action="store_true")
|
509 |
+
parser.add_argument("--freeze_backbones", action="store_true")
|
510 |
+
parser.add_argument("--exp_name", type=str, default=None)
|
511 |
+
parser.add_argument("--run_from_checkpoint", type=str, default=None)
|
512 |
+
|
513 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
514 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
515 |
+
# let's parse it to get our arguments.
|
516 |
+
model_args, data_args, training_args = parser.parse_json_file(
|
517 |
+
json_file=os.path.abspath(sys.argv[1])
|
518 |
+
)
|
519 |
+
else:
|
520 |
+
(
|
521 |
+
model_args,
|
522 |
+
data_args,
|
523 |
+
training_args,
|
524 |
+
args,
|
525 |
+
) = parser.parse_args_into_dataclasses()
|
526 |
+
|
527 |
+
if (
|
528 |
+
os.path.exists(training_args.output_dir)
|
529 |
+
and os.listdir(training_args.output_dir)
|
530 |
+
and training_args.do_train
|
531 |
+
and not training_args.overwrite_output_dir
|
532 |
+
):
|
533 |
+
raise ValueError(
|
534 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty."
|
535 |
+
"Use --overwrite_output_dir to overcome."
|
536 |
+
)
|
537 |
+
|
538 |
+
# Make one log on every process with the configuration for debugging.
|
539 |
+
logging.basicConfig(
|
540 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
541 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
542 |
+
level=logging.INFO,
|
543 |
+
)
|
544 |
+
# Setup logging, we only want one process per machine to log things on the screen.
|
545 |
+
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
546 |
+
if jax.process_index() == 0:
|
547 |
+
transformers.utils.logging.set_verbosity_info()
|
548 |
+
else:
|
549 |
+
transformers.utils.logging.set_verbosity_error()
|
550 |
+
|
551 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
552 |
+
logger.info(f"Training/evaluation parameters {training_args}")
|
553 |
+
|
554 |
+
if model_args.tokenizer_name:
|
555 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
556 |
+
model_args.tokenizer_name,
|
557 |
+
cache_dir=model_args.cache_dir,
|
558 |
+
use_fast=model_args.use_fast_tokenizer
|
559 |
+
)
|
560 |
+
elif model_args.text_model_name_or_path:
|
561 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
562 |
+
model_args.text_model_name_or_path,
|
563 |
+
cache_dir=model_args.cache_dir,
|
564 |
+
use_fast=model_args.use_fast_tokenizer,
|
565 |
+
)
|
566 |
+
else:
|
567 |
+
raise ValueError(
|
568 |
+
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
|
569 |
+
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
570 |
+
)
|
571 |
+
|
572 |
+
|
573 |
+
if args.run_from_checkpoint is not None:
|
574 |
+
with open(f"{args.run_from_checkpoint}/config.json", "r") as fp:
|
575 |
+
config_dict = json.load(fp)
|
576 |
+
config_dict["vision_config"]["model_type"] = "clip"
|
577 |
+
config = HybridCLIPConfig(**config_dict)
|
578 |
+
model = FlaxHybridCLIP.from_pretrained(
|
579 |
+
args.run_from_checkpoint,
|
580 |
+
seed=training_args.seed,
|
581 |
+
dtype=getattr(jnp, model_args.dtype),
|
582 |
+
config=config,
|
583 |
+
freeze_backbones=args.freeze_backbones
|
584 |
+
)
|
585 |
+
else:
|
586 |
+
|
587 |
+
model = FlaxHybridCLIP.from_text_vision_pretrained(
|
588 |
+
model_args.text_model_name_or_path,
|
589 |
+
model_args.vision_model_name_or_path,
|
590 |
+
seed=training_args.seed,
|
591 |
+
dtype=getattr(jnp, model_args.dtype),
|
592 |
+
text_from_pt=False,
|
593 |
+
vision_from_pt=model_args.from_pt,
|
594 |
+
freeze_backbones=args.freeze_backbones
|
595 |
+
)
|
596 |
+
config = model.config
|
597 |
+
# set seed for torch dataloaders
|
598 |
+
set_seed(training_args.seed)
|
599 |
+
|
600 |
+
# Initialize torchvision transforms and jit them for faster processing
|
601 |
+
train_preprocess = Transform(config.vision_config.image_size, augment=True)
|
602 |
+
train_preprocess = torch.jit.script(train_preprocess)
|
603 |
+
|
604 |
+
val_preprocess = Transform(config.vision_config.image_size)
|
605 |
+
val_preprocess = torch.jit.script(val_preprocess)
|
606 |
+
|
607 |
+
# Initialize the image-text dataset
|
608 |
+
train_dataset = ImageTextDataset(
|
609 |
+
data_args.data_dir,
|
610 |
+
data_args.train_file,
|
611 |
+
captions_per_image=-1,
|
612 |
+
transform=train_preprocess,
|
613 |
+
seed=training_args.seed,
|
614 |
+
)
|
615 |
+
|
616 |
+
eval_dataset = ImageTextDataset(
|
617 |
+
data_args.data_dir,
|
618 |
+
data_args.validation_file,
|
619 |
+
captions_per_image=-1,
|
620 |
+
transform=val_preprocess,
|
621 |
+
seed=training_args.seed,
|
622 |
+
)
|
623 |
+
|
624 |
+
# Store some constant
|
625 |
+
num_epochs = int(training_args.num_train_epochs)
|
626 |
+
train_batch_size = (
|
627 |
+
int(training_args.per_device_train_batch_size) * jax.device_count()
|
628 |
+
)
|
629 |
+
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
|
630 |
+
steps_per_epoch = len(train_dataset) // train_batch_size
|
631 |
+
total_train_steps = steps_per_epoch * num_epochs
|
632 |
+
|
633 |
+
# Use collate function to tokenizer the text and convert the processed images to numpy
|
634 |
+
def collate_fn(examples):
|
635 |
+
pixel_values = (
|
636 |
+
torch.stack([example[0] for example in examples])
|
637 |
+
.permute(0, 2, 3, 1)
|
638 |
+
.numpy()
|
639 |
+
)
|
640 |
+
captions = [example[1] for example in examples]
|
641 |
+
inputs = tokenizer(
|
642 |
+
captions,
|
643 |
+
max_length=data_args.max_seq_length,
|
644 |
+
padding="max_length",
|
645 |
+
truncation=True,
|
646 |
+
return_tensors="np",
|
647 |
+
)
|
648 |
+
|
649 |
+
batch = {
|
650 |
+
"pixel_values": pixel_values,
|
651 |
+
"input_ids": inputs["input_ids"],
|
652 |
+
"attention_mask": inputs["attention_mask"],
|
653 |
+
}
|
654 |
+
|
655 |
+
return batch
|
656 |
+
|
657 |
+
# Create data loaders
|
658 |
+
train_loader = torch.utils.data.DataLoader(
|
659 |
+
train_dataset,
|
660 |
+
batch_size=train_batch_size,
|
661 |
+
shuffle=True,
|
662 |
+
num_workers=data_args.preprocessing_num_workers,
|
663 |
+
#persistent_workers=True,
|
664 |
+
drop_last=True,
|
665 |
+
collate_fn=collate_fn,
|
666 |
+
)
|
667 |
+
|
668 |
+
eval_loader = torch.utils.data.DataLoader(
|
669 |
+
eval_dataset,
|
670 |
+
batch_size=eval_batch_size,
|
671 |
+
shuffle=False,
|
672 |
+
num_workers=data_args.preprocessing_num_workers,
|
673 |
+
#persistent_workers=True,
|
674 |
+
drop_last=True,
|
675 |
+
collate_fn=collate_fn,
|
676 |
+
)
|
677 |
+
|
678 |
+
# Enable tensorboard only on the master node
|
679 |
+
if has_tensorboard and jax.process_index() == 0:
|
680 |
+
summary_writer = SummaryWriter(
|
681 |
+
log_dir=Path(training_args.output_dir).joinpath("logs").as_posix()
|
682 |
+
)
|
683 |
+
|
684 |
+
# Enable wandb
|
685 |
+
if jax.process_index() == 0 and args.log_wandb:
|
686 |
+
try:
|
687 |
+
wandb.init(
|
688 |
+
name=args.exp_name,
|
689 |
+
entity="galuh",
|
690 |
+
project="clip-indonesian",
|
691 |
+
sync_tensorboard=True
|
692 |
+
)
|
693 |
+
wandb.config.update(training_args)
|
694 |
+
wandb.config.update(model_args)
|
695 |
+
wandb.config.update(data_args)
|
696 |
+
except ImportError as e:
|
697 |
+
print(e)
|
698 |
+
|
699 |
+
# Initialize our training
|
700 |
+
rng = jax.random.PRNGKey(training_args.seed)
|
701 |
+
rng, dropout_rng = jax.random.split(rng)
|
702 |
+
|
703 |
+
# Create learning rate schedule
|
704 |
+
if training_args.warmup_steps:
|
705 |
+
warmup_steps = training_args.warmup_steps
|
706 |
+
elif training_args.warmup_ratio:
|
707 |
+
warmup_steps = int(training_args.warmup_ratio * total_train_steps)
|
708 |
+
else:
|
709 |
+
raise RuntimeError(
|
710 |
+
"You have to specify either the warmup_steps or warmup_ratio CLI parameter"
|
711 |
+
)
|
712 |
+
|
713 |
+
decay_lr_schedule_fn = create_learning_rate_fn(
|
714 |
+
len(train_dataset),
|
715 |
+
train_batch_size,
|
716 |
+
training_args.num_train_epochs,
|
717 |
+
warmup_steps,
|
718 |
+
training_args.learning_rate,
|
719 |
+
linear=False, # set False to activate cosine annealing
|
720 |
+
)
|
721 |
+
|
722 |
+
# create adam optimizer
|
723 |
+
# optimizer = optax.adamw(
|
724 |
+
# learning_rate=decay_lr_schedule_fn,
|
725 |
+
# b1=training_args.adam_beta1,
|
726 |
+
# b2=training_args.adam_beta2,
|
727 |
+
# eps=training_args.adam_epsilon,
|
728 |
+
# weight_decay=training_args.weight_decay,
|
729 |
+
# )
|
730 |
+
|
731 |
+
optimizer = optax.chain(
|
732 |
+
optax.adaptive_grad_clip(0.01, eps=0.001),
|
733 |
+
optax.scale_by_belief(),
|
734 |
+
optax.scale_by_schedule(decay_lr_schedule_fn),
|
735 |
+
optax.scale(-1.0),
|
736 |
+
)
|
737 |
+
|
738 |
+
'''optimizer = optax.adafactor(
|
739 |
+
learning_rate=decay_lr_schedule_fn,
|
740 |
+
)'''
|
741 |
+
|
742 |
+
# Setup train state
|
743 |
+
state = TrainState.create(
|
744 |
+
apply_fn=model.__call__,
|
745 |
+
params=model.params,
|
746 |
+
tx=optimizer,
|
747 |
+
dropout_rng=dropout_rng,
|
748 |
+
)
|
749 |
+
|
750 |
+
def cross_entropy(logits, axis):
|
751 |
+
logprobs = jax.nn.log_softmax(logits, axis=axis)
|
752 |
+
nll = jnp.diag(logprobs)
|
753 |
+
ce = -jnp.mean(nll)
|
754 |
+
return ce
|
755 |
+
|
756 |
+
def clip_loss(similarity):
|
757 |
+
loss = (
|
758 |
+
cross_entropy(similarity, axis=0) + cross_entropy(similarity, axis=1)
|
759 |
+
) / 2
|
760 |
+
return loss
|
761 |
+
|
762 |
+
# Define gradient update step fn
|
763 |
+
def train_step(state, batch):
|
764 |
+
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
|
765 |
+
|
766 |
+
def compute_loss(params):
|
767 |
+
logits = state.apply_fn(
|
768 |
+
**batch, params=params, dropout_rng=dropout_rng, train=True
|
769 |
+
)[0]
|
770 |
+
loss = clip_loss(logits)
|
771 |
+
return loss
|
772 |
+
|
773 |
+
grad_fn = jax.value_and_grad(compute_loss)
|
774 |
+
loss, grad = grad_fn(state.params)
|
775 |
+
grad = jax.lax.pmean(grad, "batch")
|
776 |
+
|
777 |
+
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
|
778 |
+
|
779 |
+
metrics = {
|
780 |
+
"loss": loss,
|
781 |
+
"learning_rate": decay_lr_schedule_fn(state.step),
|
782 |
+
}
|
783 |
+
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
784 |
+
|
785 |
+
return new_state, metrics
|
786 |
+
|
787 |
+
# Define eval fn
|
788 |
+
def eval_step(params, batch):
|
789 |
+
logits = model(**batch, params=params, train=False)[0]
|
790 |
+
loss = clip_loss(logits)
|
791 |
+
|
792 |
+
# summarize metrics
|
793 |
+
metrics = {"loss": loss}
|
794 |
+
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
795 |
+
return metrics
|
796 |
+
|
797 |
+
# Create parallel version of the train and eval step
|
798 |
+
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
|
799 |
+
p_eval_step = jax.pmap(eval_step, "batch")
|
800 |
+
|
801 |
+
# Replicate the train state on each device
|
802 |
+
state = state.replicate()
|
803 |
+
|
804 |
+
logger.info("***** Running training *****")
|
805 |
+
logger.info(f" TPU = {jax.device_count()}")
|
806 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
807 |
+
logger.info(f" Num Epochs = {num_epochs}")
|
808 |
+
logger.info(
|
809 |
+
f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}"
|
810 |
+
)
|
811 |
+
logger.info(
|
812 |
+
f" Total train batch size (w. parallel & distributed) = {train_batch_size}"
|
813 |
+
)
|
814 |
+
logger.info(f" Total optimization steps = {total_train_steps}")
|
815 |
+
logger.info(f" Total warmup steps = {warmup_steps}")
|
816 |
+
|
817 |
+
train_time = 0
|
818 |
+
# Create sampling rng
|
819 |
+
rng, input_rng = jax.random.split(rng)
|
820 |
+
|
821 |
+
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
|
822 |
+
for epoch in epochs:
|
823 |
+
# ======================== Training ================================
|
824 |
+
train_start = time.time()
|
825 |
+
|
826 |
+
# Create sampling rng
|
827 |
+
rng, input_rng = jax.random.split(rng)
|
828 |
+
train_metrics = []
|
829 |
+
|
830 |
+
num_train_samples = len(train_dataset)
|
831 |
+
|
832 |
+
steps_per_epoch = len(train_dataset) // train_batch_size
|
833 |
+
train_step_progress_bar = tqdm(
|
834 |
+
total=steps_per_epoch, desc="Training...", position=1, leave=False
|
835 |
+
)
|
836 |
+
# train
|
837 |
+
for step, batch in enumerate(train_loader):
|
838 |
+
batch = shard(batch)
|
839 |
+
state, train_metric = p_train_step(state, batch)
|
840 |
+
train_metrics.append(train_metric)
|
841 |
+
|
842 |
+
train_step_progress_bar.update(1)
|
843 |
+
|
844 |
+
cur_step = epoch * (num_train_samples // train_batch_size) + step + 1
|
845 |
+
|
846 |
+
if cur_step % training_args.logging_steps == 0 and cur_step > 0:
|
847 |
+
train_time += time.time() - train_start
|
848 |
+
train_metric = unreplicate(train_metric)
|
849 |
+
|
850 |
+
# Save tensorboard metrics
|
851 |
+
if has_tensorboard and jax.process_index() == 0:
|
852 |
+
write_train_metric(
|
853 |
+
summary_writer, train_metrics, train_time, cur_step
|
854 |
+
)
|
855 |
+
|
856 |
+
# Save wandb metrics
|
857 |
+
if args.log_wandb and jax.process_index() == 0:
|
858 |
+
#_metrics = {k if k=="learning_rate" else f"train_{k}":mb_item(v.mean()) for k, v in train_metric.items()}
|
859 |
+
#_metrics = {k if k=="learning_rate" else f"train_{k}":mb_item(v.mean()) for k, v in train_metric.items()}
|
860 |
+
_metrics = {f'train_{k}': jax.device_get(v) for k,v in train_metric.items()}
|
861 |
+
wandb.log({"train_step":cur_step, **_metrics}, commit=True)
|
862 |
+
|
863 |
+
epochs.write(
|
864 |
+
f"Log at Step: {cur_step} (Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
|
865 |
+
)
|
866 |
+
|
867 |
+
logging.info("Emptying train metrics")
|
868 |
+
|
869 |
+
del train_metric
|
870 |
+
del train_metrics
|
871 |
+
train_metrics = []
|
872 |
+
|
873 |
+
gc.collect()
|
874 |
+
torch.cuda.empty_cache()
|
875 |
+
|
876 |
+
if cur_step % training_args.eval_steps == 0 and cur_step > 0:
|
877 |
+
# ======================== Evaluating ==============================
|
878 |
+
num_eval_samples = len(eval_dataset)
|
879 |
+
eval_metrics = []
|
880 |
+
eval_steps = len(eval_dataset) // eval_batch_size
|
881 |
+
eval_step_progress_bar = tqdm(
|
882 |
+
total=eval_steps, desc="Evaluating...", position=2, leave=False
|
883 |
+
)
|
884 |
+
for batch in eval_loader:
|
885 |
+
# Model forward
|
886 |
+
batch = shard(batch)
|
887 |
+
metrics = p_eval_step(state.params, batch)
|
888 |
+
eval_metrics.append(metrics)
|
889 |
+
|
890 |
+
eval_step_progress_bar.update(1)
|
891 |
+
|
892 |
+
# normalize eval metrics
|
893 |
+
eval_metrics = get_metrics(eval_metrics)
|
894 |
+
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
|
895 |
+
|
896 |
+
# Print metrics and update progress bar
|
897 |
+
desc = f"Eval at Step: {cur_step} (Loss: {eval_metrics['loss']})"
|
898 |
+
epochs.write(desc)
|
899 |
+
epochs.desc = desc
|
900 |
+
|
901 |
+
# Save tfboard eval
|
902 |
+
if has_tensorboard and jax.process_index() == 0:
|
903 |
+
write_eval_metric(summary_writer, eval_metrics, cur_step)
|
904 |
+
|
905 |
+
# Save eval wandb
|
906 |
+
if args.log_wandb and jax.process_index() == 0:
|
907 |
+
#_metrics = {f"eval_{k}":mb_item(v) for k, v in eval_metrics.items()}
|
908 |
+
_metrics = {f'eval_{k}': jax.device_get(v) for k,v in eval_metrics.items()}
|
909 |
+
wandb.log({"eval_step":cur_step, **_metrics})
|
910 |
+
|
911 |
+
logging.info("Emptying eval metrics")
|
912 |
+
del eval_metrics
|
913 |
+
|
914 |
+
eval_metrics = []
|
915 |
+
|
916 |
+
if cur_step % training_args.save_steps == 0 and cur_step > 0:
|
917 |
+
# save checkpoint after each epoch and push checkpoint to the hub
|
918 |
+
if jax.process_index() == 0:
|
919 |
+
# params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
920 |
+
# model.save_pretrained(
|
921 |
+
# training_args.output_dir,
|
922 |
+
# params=params,
|
923 |
+
# push_to_hub=training_args.push_to_hub,
|
924 |
+
# commit_message=f"Saving weights and logs of step {cur_step}",
|
925 |
+
# )
|
926 |
+
save_model_checkpoint(
|
927 |
+
model,
|
928 |
+
training_args.output_dir,
|
929 |
+
state,
|
930 |
+
logger,
|
931 |
+
training_args.push_to_hub_organization,
|
932 |
+
with_opt=True,
|
933 |
+
push_to_hub=training_args.push_to_hub,
|
934 |
+
overwrite=True,
|
935 |
+
)
|
936 |
+
# if model_args.save_optimizer:
|
937 |
+
# # this saves full state including optimizer
|
938 |
+
# save_checkpoint(training_args.output_dir, state, state.step, keep=training_args.save_total_limit, overwrite=True)
|
939 |
+
if training_args.save_total_limit is not None:
|
940 |
+
rotate_checkpoints(
|
941 |
+
training_args.output_dir,
|
942 |
+
training_args.save_total_limit,
|
943 |
+
logger,
|
944 |
+
)
|
945 |
+
|
946 |
+
train_step_progress_bar.close() #check
|
947 |
+
|
948 |
+
'''# save checkpoint after each epoch and push checkpoint to the hub
|
949 |
+
if jax.process_index() == 0:
|
950 |
+
params = jax.device_get(unreplicate(state.params))
|
951 |
+
model.save_pretrained(
|
952 |
+
training_args.output_dir + f"/{epoch+1}/",
|
953 |
+
params=params,
|
954 |
+
push_to_hub=training_args.push_to_hub,
|
955 |
+
commit_message=f"Saving weights and logs of epoch {epoch+1}",
|
956 |
+
)'''
|
957 |
+
|
958 |
+
# save model after training is over
|
959 |
+
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
960 |
+
model.save_pretrained(
|
961 |
+
training_args.output_dir,
|
962 |
+
params=params,
|
963 |
+
push_to_hub=training_args.push_to_hub,
|
964 |
+
commit_message="Add final model",
|
965 |
+
)
|
966 |
+
|
967 |
+
|
968 |
+
if __name__ == "__main__":
|
969 |
+
main()
|
970 |
+
|
hybrid_clip/run_hybrid_clip_backup_2.py
ADDED
@@ -0,0 +1,971 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Team All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Training a CLIP like dual encoder models using text and vision encoders in the library.
|
18 |
+
|
19 |
+
The script can be used to train CLIP like models for languages other than english by using
|
20 |
+
a text encoder pre-trained in the desired language. Currently this script support the following vision
|
21 |
+
and text models:
|
22 |
+
Vision models: ViT(https://huggingface.co/models?filter=vit), CLIP (https://huggingface.co/models?filter=clip)
|
23 |
+
Text models: BERT, ROBERTa (https://huggingface.co/models?filter=masked-lm)
|
24 |
+
"""
|
25 |
+
|
26 |
+
import json
|
27 |
+
import logging
|
28 |
+
import os
|
29 |
+
import sys
|
30 |
+
import time
|
31 |
+
import numpy as np
|
32 |
+
from dataclasses import dataclass, field
|
33 |
+
from pathlib import Path
|
34 |
+
from typing import Callable, Optional
|
35 |
+
import shutil
|
36 |
+
import gc
|
37 |
+
|
38 |
+
try:
|
39 |
+
from dotenv import load_dotenv
|
40 |
+
load_dotenv("../.env")
|
41 |
+
except:
|
42 |
+
print("Couldn't find ../.env file")
|
43 |
+
|
44 |
+
import wandb
|
45 |
+
from transformers.file_utils import PushToHubMixin
|
46 |
+
|
47 |
+
|
48 |
+
import torch
|
49 |
+
from torchvision.datasets import VisionDataset
|
50 |
+
from torchvision.io import ImageReadMode, read_image
|
51 |
+
from torchvision.transforms import (
|
52 |
+
CenterCrop,
|
53 |
+
ConvertImageDtype,
|
54 |
+
Normalize,
|
55 |
+
Resize,
|
56 |
+
ColorJitter,
|
57 |
+
RandomHorizontalFlip,
|
58 |
+
RandomRotation,
|
59 |
+
RandomCrop,
|
60 |
+
RandomAffine,
|
61 |
+
RandomPerspective,
|
62 |
+
RandomAutocontrast,
|
63 |
+
RandomEqualize,
|
64 |
+
)
|
65 |
+
from torchvision.transforms.functional import InterpolationMode
|
66 |
+
from tqdm import tqdm
|
67 |
+
|
68 |
+
import jax
|
69 |
+
import jax.numpy as jnp
|
70 |
+
import optax
|
71 |
+
import transformers
|
72 |
+
from flax import jax_utils
|
73 |
+
from flax.jax_utils import unreplicate
|
74 |
+
from flax.training import train_state
|
75 |
+
from flax.training.common_utils import get_metrics, shard, shard_prng_key
|
76 |
+
from modeling_hybrid_clip import FlaxHybridCLIP
|
77 |
+
from configuration_hybrid_clip import HybridCLIPConfig
|
78 |
+
from transformers import (
|
79 |
+
AutoTokenizer,
|
80 |
+
HfArgumentParser,
|
81 |
+
TrainingArguments,
|
82 |
+
is_tensorboard_available,
|
83 |
+
set_seed,
|
84 |
+
)
|
85 |
+
from numpy.random import default_rng
|
86 |
+
from flax.serialization import to_bytes, from_bytes
|
87 |
+
|
88 |
+
logger = logging.getLogger(__name__)
|
89 |
+
|
90 |
+
def mb_item(x):
|
91 |
+
return x.item() if hasattr(x, "item") else x
|
92 |
+
|
93 |
+
# checkpoint functions
|
94 |
+
def save_model_checkpoint(
|
95 |
+
model,
|
96 |
+
save_dir,
|
97 |
+
state,
|
98 |
+
logger,
|
99 |
+
organization,
|
100 |
+
with_opt: bool = False,
|
101 |
+
push_to_hub: bool = False,
|
102 |
+
overwrite=False,
|
103 |
+
**kwargs,
|
104 |
+
):
|
105 |
+
state = jax_utils.unreplicate(state)
|
106 |
+
#params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
107 |
+
logger.info(f"Saving Checkpoint in {save_dir}")
|
108 |
+
ckpt_save_dir = f"{save_dir}/ckpt-{mb_item(state.step)-1}"
|
109 |
+
if os.path.exists(ckpt_save_dir) and not overwrite:
|
110 |
+
logger.info("checkpoint exists, skipping overwrite")
|
111 |
+
else:
|
112 |
+
model.save_pretrained(
|
113 |
+
ckpt_save_dir, params=state.params, push_to_hub=False, **kwargs
|
114 |
+
)
|
115 |
+
if with_opt:
|
116 |
+
with open(os.path.join(ckpt_save_dir, "opt_state.msgpack"), "wb") as f:
|
117 |
+
f.write(to_bytes(state.opt_state))
|
118 |
+
with open(os.path.join(ckpt_save_dir, "training_state.json"), "w") as f:
|
119 |
+
json.dump({"step": state.step.item()}, f)
|
120 |
+
|
121 |
+
logger.info("checkpoint saved")
|
122 |
+
|
123 |
+
if push_to_hub:
|
124 |
+
repo_name = Path(save_dir).name
|
125 |
+
repo_url = PushToHubMixin._get_repo_url_from_name(
|
126 |
+
repo_name, organization=organization, private=False, use_auth_token=True
|
127 |
+
)
|
128 |
+
repo = PushToHubMixin._create_or_get_repo(
|
129 |
+
save_dir,
|
130 |
+
repo_url=repo_url,
|
131 |
+
organization=organization,
|
132 |
+
use_auth_token=True,
|
133 |
+
)
|
134 |
+
commit_message = f"Saving weights and logs at step {mb_item(state.step)-1}"
|
135 |
+
url = PushToHubMixin._push_to_hub(repo=repo, commit_message=commit_message)
|
136 |
+
logger.info(f"Model pushed to the hub in this commit: {url}")
|
137 |
+
|
138 |
+
|
139 |
+
def restore_model_checkpoint(save_dir, state, logger):
|
140 |
+
logger.info(f"Restoring checkpoint from {save_dir}.")
|
141 |
+
with open(os.path.join(save_dir, "flax_model.msgpack"), "rb") as f:
|
142 |
+
params = from_bytes(state.params, f.read())
|
143 |
+
|
144 |
+
with open(os.path.join(save_dir, "opt_state.msgpack"), "rb") as f:
|
145 |
+
opt_state = from_bytes(state.opt_state, f.read())
|
146 |
+
|
147 |
+
with open(os.path.join(save_dir, "training_state.json"), "r") as f:
|
148 |
+
training_state = json.load(f)
|
149 |
+
step = training_state["step"]
|
150 |
+
|
151 |
+
logger.info("checkpoint restored")
|
152 |
+
# return state.replace(step=step, params=params, opt_state=opt_state), step
|
153 |
+
return params, opt_state, step
|
154 |
+
|
155 |
+
|
156 |
+
def rotate_checkpoints(ckpt_dir: str, save_total_limit: int, logger):
|
157 |
+
"Removes older checkpoints so that `save_total_limit` checkpoints are kept"
|
158 |
+
# TODO: what to remove is decided using step number only, we might want to improve that
|
159 |
+
ckpts = [str(x) for x in Path(ckpt_dir).glob("ckpt-*")]
|
160 |
+
# sort checkpoints by step
|
161 |
+
ckpts_sorted = sorted(ckpts, key=lambda x: int(x.split("-")[-1]))
|
162 |
+
ckpts_to_delete = ckpts_sorted[:-save_total_limit]
|
163 |
+
for ckpt in ckpts_to_delete:
|
164 |
+
logger.info(
|
165 |
+
f"Deleting older checkpoint [{ckpt}] due to save_total_limit ({save_total_limit})"
|
166 |
+
)
|
167 |
+
shutil.rmtree(ckpt)
|
168 |
+
|
169 |
+
# Cache the result
|
170 |
+
has_tensorboard = is_tensorboard_available()
|
171 |
+
if has_tensorboard:
|
172 |
+
try:
|
173 |
+
from flax.metrics.tensorboard import SummaryWriter
|
174 |
+
except ImportError as ie:
|
175 |
+
has_tensorboard = False
|
176 |
+
print(
|
177 |
+
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
|
178 |
+
)
|
179 |
+
|
180 |
+
else:
|
181 |
+
print(
|
182 |
+
"Unable to display metrics through TensorBoard because the package is not installed: "
|
183 |
+
"Please run pip install tensorboard to enable."
|
184 |
+
)
|
185 |
+
|
186 |
+
|
187 |
+
@dataclass
|
188 |
+
class ModelArguments:
|
189 |
+
"""
|
190 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
|
191 |
+
"""
|
192 |
+
|
193 |
+
text_model_name_or_path: str = field(
|
194 |
+
metadata={
|
195 |
+
"help": "The text model checkpoint for weights initialization."
|
196 |
+
"Don't set if you want to train a model from scratch."
|
197 |
+
},
|
198 |
+
)
|
199 |
+
vision_model_name_or_path: str = field(
|
200 |
+
metadata={
|
201 |
+
"help": "The vision model checkpoint for weights initialization."
|
202 |
+
"Don't set if you want to train a model from scratch."
|
203 |
+
},
|
204 |
+
)
|
205 |
+
from_pt: bool = field(
|
206 |
+
default=True,
|
207 |
+
metadata={
|
208 |
+
"help": "whether to load the text and vision model using PyTorch checkpoints."
|
209 |
+
},
|
210 |
+
)
|
211 |
+
config_name: Optional[str] = field(
|
212 |
+
default=None,
|
213 |
+
metadata={
|
214 |
+
"help": "Pretrained config name or path if not the same as model_name"
|
215 |
+
},
|
216 |
+
)
|
217 |
+
tokenizer_name: Optional[str] = field(
|
218 |
+
default=None,
|
219 |
+
metadata={
|
220 |
+
"help": "Pretrained tokenizer name or path if not the same as model_name"
|
221 |
+
},
|
222 |
+
)
|
223 |
+
cache_dir: Optional[str] = field(
|
224 |
+
default=None,
|
225 |
+
metadata={
|
226 |
+
"help": "Where do you want to store the pretrained models downloaded from s3"
|
227 |
+
},
|
228 |
+
)
|
229 |
+
use_fast_tokenizer: bool = field(
|
230 |
+
default=True,
|
231 |
+
metadata={
|
232 |
+
"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."
|
233 |
+
},
|
234 |
+
)
|
235 |
+
dtype: Optional[str] = field(
|
236 |
+
default="float32",
|
237 |
+
metadata={
|
238 |
+
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
|
239 |
+
},
|
240 |
+
)
|
241 |
+
|
242 |
+
|
243 |
+
@dataclass
|
244 |
+
class DataTrainingArguments:
|
245 |
+
"""
|
246 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
247 |
+
"""
|
248 |
+
|
249 |
+
data_dir: Optional[str] = field(
|
250 |
+
default=None, metadata={"help": "The data directory containing input files."}
|
251 |
+
)
|
252 |
+
train_file: Optional[str] = field(
|
253 |
+
default=None,
|
254 |
+
metadata={"help": "The input training data file (a jsonlines file)."},
|
255 |
+
)
|
256 |
+
validation_file: Optional[str] = field(
|
257 |
+
default=None,
|
258 |
+
metadata={"help": "An optional input evaluation data file (a jsonlines file)."},
|
259 |
+
)
|
260 |
+
max_seq_length: Optional[int] = field(
|
261 |
+
default=72,
|
262 |
+
metadata={
|
263 |
+
"help": "The maximum total input sequence length after tokenization. Sequences longer "
|
264 |
+
"than this will be truncated, sequences shorter will be padded."
|
265 |
+
},
|
266 |
+
)
|
267 |
+
max_train_samples: Optional[int] = field(
|
268 |
+
default=None,
|
269 |
+
metadata={
|
270 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
271 |
+
"value if set."
|
272 |
+
},
|
273 |
+
)
|
274 |
+
max_eval_samples: Optional[int] = field(
|
275 |
+
default=None,
|
276 |
+
metadata={
|
277 |
+
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
278 |
+
"value if set."
|
279 |
+
},
|
280 |
+
)
|
281 |
+
overwrite_cache: bool = field(
|
282 |
+
default=False,
|
283 |
+
metadata={"help": "Overwrite the cached training and evaluation sets"},
|
284 |
+
)
|
285 |
+
overwrite_cache: bool = field(
|
286 |
+
default=False,
|
287 |
+
metadata={"help": "Overwrite the cached training and evaluation sets"},
|
288 |
+
)
|
289 |
+
preprocessing_num_workers: Optional[int] = field(
|
290 |
+
default=None,
|
291 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
292 |
+
)
|
293 |
+
|
294 |
+
def __post_init__(self):
|
295 |
+
if self.train_file is None and self.validation_file is None:
|
296 |
+
raise ValueError(
|
297 |
+
"Need either a dataset name or a training/validation file."
|
298 |
+
)
|
299 |
+
else:
|
300 |
+
if self.train_file is not None:
|
301 |
+
extension = self.train_file.split(".")[-1]
|
302 |
+
assert extension == "json", "`train_file` should be a json file."
|
303 |
+
if self.validation_file is not None:
|
304 |
+
extension = self.validation_file.split(".")[-1]
|
305 |
+
assert extension == "json", "`validation_file` should be a json file."
|
306 |
+
|
307 |
+
|
308 |
+
# We use torchvision for faster image pre-processing.
|
309 |
+
# We need to ensure faster processing speed as it can become a bottleneck on TPU
|
310 |
+
class Transform(torch.nn.Module):
|
311 |
+
def __init__(self, image_size, augment=False):
|
312 |
+
super().__init__()
|
313 |
+
if not augment:
|
314 |
+
self.transforms = torch.nn.Sequential(
|
315 |
+
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
|
316 |
+
CenterCrop(image_size),
|
317 |
+
ConvertImageDtype(torch.float),
|
318 |
+
Normalize(
|
319 |
+
(0.48145466, 0.4578275, 0.40821073),
|
320 |
+
(0.26862954, 0.26130258, 0.27577711),
|
321 |
+
),
|
322 |
+
)
|
323 |
+
else:
|
324 |
+
self.transforms = torch.nn.Sequential(
|
325 |
+
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
|
326 |
+
# CenterCrop(image_size),
|
327 |
+
RandomCrop([image_size], pad_if_needed=True, padding_mode="edge"),
|
328 |
+
ColorJitter(hue=0.1),
|
329 |
+
RandomHorizontalFlip(),
|
330 |
+
# RandomRotation(15, interpolation=InterpolationMode.BILINEAR, fill=128),
|
331 |
+
RandomAffine(
|
332 |
+
degrees=15,
|
333 |
+
translate=(0.1, 0.1),
|
334 |
+
scale=(0.8, 1.2),
|
335 |
+
shear=(-15, 15, -15, 15),
|
336 |
+
interpolation=InterpolationMode.BILINEAR,
|
337 |
+
fill=127,
|
338 |
+
),
|
339 |
+
RandomPerspective(
|
340 |
+
distortion_scale=0.3,
|
341 |
+
p=0.3,
|
342 |
+
interpolation=InterpolationMode.BILINEAR,
|
343 |
+
fill=127,
|
344 |
+
),
|
345 |
+
RandomAutocontrast(p=0.3),
|
346 |
+
RandomEqualize(p=0.3),
|
347 |
+
ConvertImageDtype(torch.float),
|
348 |
+
Normalize(
|
349 |
+
(0.48145466, 0.4578275, 0.40821073),
|
350 |
+
(0.26862954, 0.26130258, 0.27577711),
|
351 |
+
),
|
352 |
+
)
|
353 |
+
|
354 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
355 |
+
with torch.no_grad():
|
356 |
+
x = self.transforms(x)
|
357 |
+
return x
|
358 |
+
|
359 |
+
|
360 |
+
class ImageTextDataset(VisionDataset):
|
361 |
+
"""
|
362 |
+
Dtaset for loading image-text data for tasks like CLIP training, Image Captioning.
|
363 |
+
|
364 |
+
Args:
|
365 |
+
root: (string): The root path where the dataset is stored
|
366 |
+
file_path: (string): Path to the file containing the image_paths and associated captions.
|
367 |
+
The expected format is jsonlines where each line is a json object containing to keys.
|
368 |
+
`image_path`: The path to the image.
|
369 |
+
`captions`: An `array` of captions.
|
370 |
+
transform (callable, optional): A function/transform that takes in an PIL image
|
371 |
+
and returns a transformed version. E.g, ``transforms.ToTensor``
|
372 |
+
target_transform (callable, optional): A function/transform that takes in the
|
373 |
+
target and transforms it.
|
374 |
+
transforms (callable, optional): A function/transform that takes input sample and its target as entry
|
375 |
+
and returns a transformed version.
|
376 |
+
"""
|
377 |
+
|
378 |
+
def __init__(
|
379 |
+
self,
|
380 |
+
root: str,
|
381 |
+
file_path: str,
|
382 |
+
captions_per_image=-1,
|
383 |
+
transform: Optional[Callable] = None,
|
384 |
+
target_transform: Optional[Callable] = None,
|
385 |
+
transforms: Optional[Callable] = None,
|
386 |
+
seed=42,
|
387 |
+
):
|
388 |
+
super().__init__(root, transforms, transform, target_transform)
|
389 |
+
with open(file_path, "r") as f:
|
390 |
+
#examples = [json.loads(line) for line in f.readlines()]
|
391 |
+
examples = np.array([json.loads(line) for line in f.readlines()])
|
392 |
+
|
393 |
+
self.rand_generator = default_rng(seed)
|
394 |
+
|
395 |
+
self.captions = []
|
396 |
+
self.image_paths = []
|
397 |
+
|
398 |
+
for example in examples:
|
399 |
+
if captions_per_image <= -1:
|
400 |
+
self.captions.append(example["captions"])
|
401 |
+
elif captions_per_image > 0:
|
402 |
+
self.captions.append(example["captions"][:captions_per_image])
|
403 |
+
else:
|
404 |
+
raise ValueError("captions per image cannot be zero")
|
405 |
+
|
406 |
+
self.image_paths.append(example["image_path"])
|
407 |
+
|
408 |
+
def _load_image(self, idx: int):
|
409 |
+
path = self.image_paths[idx]
|
410 |
+
im = read_image(path, mode=ImageReadMode.RGB)
|
411 |
+
return im
|
412 |
+
|
413 |
+
def _load_target(self, idx):
|
414 |
+
return self.rand_generator.choice(self.captions[idx])
|
415 |
+
# if len(self.captions[idx]) > 1:
|
416 |
+
# caption_idx = np.random.randint(0, len(self.captions[idx]))
|
417 |
+
# else:
|
418 |
+
# caption_idx = 0
|
419 |
+
# return self.captions[idx][caption_idx]
|
420 |
+
|
421 |
+
def __getitem__(self, index: int):
|
422 |
+
image = self._load_image(index)
|
423 |
+
target = self._load_target(index)
|
424 |
+
|
425 |
+
if self.transforms is not None:
|
426 |
+
image, target = self.transforms(image, target)
|
427 |
+
|
428 |
+
return image, target
|
429 |
+
|
430 |
+
def __len__(self) -> int:
|
431 |
+
return len(self.captions)
|
432 |
+
|
433 |
+
|
434 |
+
class TrainState(train_state.TrainState):
|
435 |
+
dropout_rng: jnp.ndarray
|
436 |
+
|
437 |
+
def replicate(self):
|
438 |
+
return jax_utils.replicate(self).replace(
|
439 |
+
dropout_rng=shard_prng_key(self.dropout_rng)
|
440 |
+
)
|
441 |
+
|
442 |
+
def write_train_metric(summary_writer, train_metrics, train_time, step):
|
443 |
+
summary_writer.scalar("train_time", train_time, step)
|
444 |
+
|
445 |
+
train_metrics = get_metrics(train_metrics)
|
446 |
+
for key, vals in train_metrics.items():
|
447 |
+
tag = f"train_{key}"
|
448 |
+
for i, val in enumerate(vals):
|
449 |
+
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
450 |
+
|
451 |
+
|
452 |
+
def write_eval_metric(summary_writer, eval_metrics, step):
|
453 |
+
for metric_name, value in eval_metrics.items():
|
454 |
+
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
455 |
+
|
456 |
+
|
457 |
+
def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):
|
458 |
+
summary_writer.scalar("train_time", train_time, step)
|
459 |
+
|
460 |
+
train_metrics = get_metrics(train_metrics)
|
461 |
+
for key, vals in train_metrics.items():
|
462 |
+
tag = f"train_{key}"
|
463 |
+
for i, val in enumerate(vals):
|
464 |
+
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
465 |
+
|
466 |
+
for metric_name, value in eval_metrics.items():
|
467 |
+
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
468 |
+
|
469 |
+
|
470 |
+
def create_learning_rate_fn(
|
471 |
+
train_ds_size: int,
|
472 |
+
train_batch_size: int,
|
473 |
+
num_train_epochs: int,
|
474 |
+
num_warmup_steps: int,
|
475 |
+
learning_rate: float,
|
476 |
+
linear=False,
|
477 |
+
) -> Callable[[int], jnp.array]:
|
478 |
+
"""Returns a linear warmup, linear_decay learning rate function."""
|
479 |
+
steps_per_epoch = train_ds_size // train_batch_size
|
480 |
+
num_train_steps = steps_per_epoch * num_train_epochs
|
481 |
+
if linear:
|
482 |
+
warmup_fn = optax.linear_schedule(
|
483 |
+
init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps
|
484 |
+
)
|
485 |
+
decay_fn = optax.linear_schedule(
|
486 |
+
init_value=learning_rate,
|
487 |
+
end_value=0,
|
488 |
+
transition_steps=num_train_steps - num_warmup_steps,
|
489 |
+
)
|
490 |
+
else:
|
491 |
+
warmup_fn = optax.linear_schedule(
|
492 |
+
init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps
|
493 |
+
)
|
494 |
+
decay_fn = optax.cosine_decay_schedule(
|
495 |
+
init_value=learning_rate,
|
496 |
+
decay_steps=num_train_steps - num_warmup_steps,
|
497 |
+
alpha=0.0,
|
498 |
+
)
|
499 |
+
schedule_fn = optax.join_schedules(
|
500 |
+
schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]
|
501 |
+
)
|
502 |
+
return schedule_fn
|
503 |
+
|
504 |
+
|
505 |
+
def main():
|
506 |
+
parser = HfArgumentParser(
|
507 |
+
(ModelArguments, DataTrainingArguments, TrainingArguments)
|
508 |
+
)
|
509 |
+
parser.add_argument("--log_wandb", action="store_true")
|
510 |
+
parser.add_argument("--freeze_backbones", action="store_true")
|
511 |
+
parser.add_argument("--exp_name", type=str, default=None)
|
512 |
+
parser.add_argument("--run_from_checkpoint", type=str, default=None)
|
513 |
+
|
514 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
515 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
516 |
+
# let's parse it to get our arguments.
|
517 |
+
model_args, data_args, training_args = parser.parse_json_file(
|
518 |
+
json_file=os.path.abspath(sys.argv[1])
|
519 |
+
)
|
520 |
+
else:
|
521 |
+
(
|
522 |
+
model_args,
|
523 |
+
data_args,
|
524 |
+
training_args,
|
525 |
+
args,
|
526 |
+
) = parser.parse_args_into_dataclasses()
|
527 |
+
|
528 |
+
if (
|
529 |
+
os.path.exists(training_args.output_dir)
|
530 |
+
and os.listdir(training_args.output_dir)
|
531 |
+
and training_args.do_train
|
532 |
+
and not training_args.overwrite_output_dir
|
533 |
+
):
|
534 |
+
raise ValueError(
|
535 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty."
|
536 |
+
"Use --overwrite_output_dir to overcome."
|
537 |
+
)
|
538 |
+
|
539 |
+
# Make one log on every process with the configuration for debugging.
|
540 |
+
logging.basicConfig(
|
541 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
542 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
543 |
+
level=logging.INFO,
|
544 |
+
)
|
545 |
+
# Setup logging, we only want one process per machine to log things on the screen.
|
546 |
+
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
547 |
+
if jax.process_index() == 0:
|
548 |
+
transformers.utils.logging.set_verbosity_info()
|
549 |
+
else:
|
550 |
+
transformers.utils.logging.set_verbosity_error()
|
551 |
+
|
552 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
553 |
+
logger.info(f"Training/evaluation parameters {training_args}")
|
554 |
+
|
555 |
+
if model_args.tokenizer_name:
|
556 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
557 |
+
model_args.tokenizer_name,
|
558 |
+
cache_dir=model_args.cache_dir,
|
559 |
+
use_fast=model_args.use_fast_tokenizer
|
560 |
+
)
|
561 |
+
elif model_args.text_model_name_or_path:
|
562 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
563 |
+
model_args.text_model_name_or_path,
|
564 |
+
cache_dir=model_args.cache_dir,
|
565 |
+
use_fast=model_args.use_fast_tokenizer,
|
566 |
+
)
|
567 |
+
else:
|
568 |
+
raise ValueError(
|
569 |
+
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
|
570 |
+
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
571 |
+
)
|
572 |
+
|
573 |
+
|
574 |
+
if args.run_from_checkpoint is not None:
|
575 |
+
with open(f"{args.run_from_checkpoint}/config.json", "r") as fp:
|
576 |
+
config_dict = json.load(fp)
|
577 |
+
config_dict["vision_config"]["model_type"] = "clip"
|
578 |
+
config = HybridCLIPConfig(**config_dict)
|
579 |
+
model = FlaxHybridCLIP.from_pretrained(
|
580 |
+
args.run_from_checkpoint,
|
581 |
+
seed=training_args.seed,
|
582 |
+
dtype=getattr(jnp, model_args.dtype),
|
583 |
+
config=config,
|
584 |
+
freeze_backbones=args.freeze_backbones
|
585 |
+
)
|
586 |
+
else:
|
587 |
+
|
588 |
+
model = FlaxHybridCLIP.from_text_vision_pretrained(
|
589 |
+
model_args.text_model_name_or_path,
|
590 |
+
model_args.vision_model_name_or_path,
|
591 |
+
seed=training_args.seed,
|
592 |
+
dtype=getattr(jnp, model_args.dtype),
|
593 |
+
text_from_pt=False,
|
594 |
+
vision_from_pt=model_args.from_pt,
|
595 |
+
freeze_backbones=args.freeze_backbones
|
596 |
+
)
|
597 |
+
config = model.config
|
598 |
+
# set seed for torch dataloaders
|
599 |
+
set_seed(training_args.seed)
|
600 |
+
|
601 |
+
# Initialize torchvision transforms and jit them for faster processing
|
602 |
+
train_preprocess = Transform(config.vision_config.image_size, augment=True)
|
603 |
+
train_preprocess = torch.jit.script(train_preprocess)
|
604 |
+
|
605 |
+
val_preprocess = Transform(config.vision_config.image_size)
|
606 |
+
val_preprocess = torch.jit.script(val_preprocess)
|
607 |
+
|
608 |
+
# Initialize the image-text dataset
|
609 |
+
train_dataset = ImageTextDataset(
|
610 |
+
data_args.data_dir,
|
611 |
+
data_args.train_file,
|
612 |
+
captions_per_image=-1,
|
613 |
+
transform=train_preprocess,
|
614 |
+
seed=training_args.seed,
|
615 |
+
)
|
616 |
+
|
617 |
+
eval_dataset = ImageTextDataset(
|
618 |
+
data_args.data_dir,
|
619 |
+
data_args.validation_file,
|
620 |
+
captions_per_image=-1,
|
621 |
+
transform=val_preprocess,
|
622 |
+
seed=training_args.seed,
|
623 |
+
)
|
624 |
+
|
625 |
+
# Store some constant
|
626 |
+
num_epochs = int(training_args.num_train_epochs)
|
627 |
+
train_batch_size = (
|
628 |
+
int(training_args.per_device_train_batch_size) * jax.device_count()
|
629 |
+
)
|
630 |
+
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
|
631 |
+
steps_per_epoch = len(train_dataset) // train_batch_size
|
632 |
+
total_train_steps = steps_per_epoch * num_epochs
|
633 |
+
|
634 |
+
# Use collate function to tokenizer the text and convert the processed images to numpy
|
635 |
+
def collate_fn(examples):
|
636 |
+
pixel_values = (
|
637 |
+
torch.stack([example[0] for example in examples])
|
638 |
+
.permute(0, 2, 3, 1)
|
639 |
+
.numpy()
|
640 |
+
)
|
641 |
+
captions = [example[1] for example in examples]
|
642 |
+
inputs = tokenizer(
|
643 |
+
captions,
|
644 |
+
max_length=data_args.max_seq_length,
|
645 |
+
padding="max_length",
|
646 |
+
truncation=True,
|
647 |
+
return_tensors="np",
|
648 |
+
)
|
649 |
+
|
650 |
+
batch = {
|
651 |
+
"pixel_values": pixel_values,
|
652 |
+
"input_ids": inputs["input_ids"],
|
653 |
+
"attention_mask": inputs["attention_mask"],
|
654 |
+
}
|
655 |
+
|
656 |
+
return batch
|
657 |
+
|
658 |
+
# Create data loaders
|
659 |
+
train_loader = torch.utils.data.DataLoader(
|
660 |
+
train_dataset,
|
661 |
+
batch_size=train_batch_size,
|
662 |
+
shuffle=True,
|
663 |
+
num_workers=data_args.preprocessing_num_workers,
|
664 |
+
#persistent_workers=True,
|
665 |
+
drop_last=True,
|
666 |
+
collate_fn=collate_fn,
|
667 |
+
)
|
668 |
+
|
669 |
+
eval_loader = torch.utils.data.DataLoader(
|
670 |
+
eval_dataset,
|
671 |
+
batch_size=eval_batch_size,
|
672 |
+
shuffle=False,
|
673 |
+
num_workers=data_args.preprocessing_num_workers,
|
674 |
+
#persistent_workers=True,
|
675 |
+
drop_last=True,
|
676 |
+
collate_fn=collate_fn,
|
677 |
+
)
|
678 |
+
|
679 |
+
# Enable tensorboard only on the master node
|
680 |
+
if has_tensorboard and jax.process_index() == 0:
|
681 |
+
summary_writer = SummaryWriter(
|
682 |
+
log_dir=Path(training_args.output_dir).joinpath("logs").as_posix()
|
683 |
+
)
|
684 |
+
|
685 |
+
# Enable wandb
|
686 |
+
if jax.process_index() == 0 and args.log_wandb:
|
687 |
+
try:
|
688 |
+
wandb.init(
|
689 |
+
name=args.exp_name,
|
690 |
+
entity="galuh",
|
691 |
+
project="clip-indonesian",
|
692 |
+
sync_tensorboard=True
|
693 |
+
)
|
694 |
+
wandb.config.update(training_args)
|
695 |
+
wandb.config.update(model_args)
|
696 |
+
wandb.config.update(data_args)
|
697 |
+
except ImportError as e:
|
698 |
+
print(e)
|
699 |
+
|
700 |
+
# Initialize our training
|
701 |
+
rng = jax.random.PRNGKey(training_args.seed)
|
702 |
+
rng, dropout_rng = jax.random.split(rng)
|
703 |
+
|
704 |
+
# Create learning rate schedule
|
705 |
+
if training_args.warmup_steps:
|
706 |
+
warmup_steps = training_args.warmup_steps
|
707 |
+
elif training_args.warmup_ratio:
|
708 |
+
warmup_steps = int(training_args.warmup_ratio * total_train_steps)
|
709 |
+
else:
|
710 |
+
raise RuntimeError(
|
711 |
+
"You have to specify either the warmup_steps or warmup_ratio CLI parameter"
|
712 |
+
)
|
713 |
+
|
714 |
+
decay_lr_schedule_fn = create_learning_rate_fn(
|
715 |
+
len(train_dataset),
|
716 |
+
train_batch_size,
|
717 |
+
training_args.num_train_epochs,
|
718 |
+
warmup_steps,
|
719 |
+
training_args.learning_rate,
|
720 |
+
linear=False, # set False to activate cosine annealing
|
721 |
+
)
|
722 |
+
|
723 |
+
# create adam optimizer
|
724 |
+
# optimizer = optax.adamw(
|
725 |
+
# learning_rate=decay_lr_schedule_fn,
|
726 |
+
# b1=training_args.adam_beta1,
|
727 |
+
# b2=training_args.adam_beta2,
|
728 |
+
# eps=training_args.adam_epsilon,
|
729 |
+
# weight_decay=training_args.weight_decay,
|
730 |
+
# )
|
731 |
+
|
732 |
+
optimizer = optax.chain(
|
733 |
+
optax.adaptive_grad_clip(0.01, eps=0.001),
|
734 |
+
optax.scale_by_belief(),
|
735 |
+
optax.scale_by_schedule(decay_lr_schedule_fn),
|
736 |
+
optax.scale(-1.0),
|
737 |
+
)
|
738 |
+
|
739 |
+
'''optimizer = optax.adafactor(
|
740 |
+
learning_rate=decay_lr_schedule_fn,
|
741 |
+
)'''
|
742 |
+
|
743 |
+
# Setup train state
|
744 |
+
state = TrainState.create(
|
745 |
+
apply_fn=model.__call__,
|
746 |
+
params=model.params,
|
747 |
+
tx=optimizer,
|
748 |
+
dropout_rng=dropout_rng,
|
749 |
+
)
|
750 |
+
|
751 |
+
def cross_entropy(logits, axis):
|
752 |
+
logprobs = jax.nn.log_softmax(logits, axis=axis)
|
753 |
+
nll = jnp.diag(logprobs)
|
754 |
+
ce = -jnp.mean(nll)
|
755 |
+
return ce
|
756 |
+
|
757 |
+
def clip_loss(similarity):
|
758 |
+
loss = (
|
759 |
+
cross_entropy(similarity, axis=0) + cross_entropy(similarity, axis=1)
|
760 |
+
) / 2
|
761 |
+
return loss
|
762 |
+
|
763 |
+
# Define gradient update step fn
|
764 |
+
def train_step(state, batch):
|
765 |
+
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
|
766 |
+
|
767 |
+
def compute_loss(params):
|
768 |
+
logits = state.apply_fn(
|
769 |
+
**batch, params=params, dropout_rng=dropout_rng, train=True
|
770 |
+
)[0]
|
771 |
+
loss = clip_loss(logits)
|
772 |
+
return loss
|
773 |
+
|
774 |
+
grad_fn = jax.value_and_grad(compute_loss)
|
775 |
+
loss, grad = grad_fn(state.params)
|
776 |
+
grad = jax.lax.pmean(grad, "batch")
|
777 |
+
|
778 |
+
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
|
779 |
+
|
780 |
+
metrics = {
|
781 |
+
"loss": loss,
|
782 |
+
"learning_rate": decay_lr_schedule_fn(state.step),
|
783 |
+
}
|
784 |
+
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
785 |
+
|
786 |
+
return new_state, metrics
|
787 |
+
|
788 |
+
# Define eval fn
|
789 |
+
def eval_step(params, batch):
|
790 |
+
logits = model(**batch, params=params, train=False)[0]
|
791 |
+
loss = clip_loss(logits)
|
792 |
+
|
793 |
+
# summarize metrics
|
794 |
+
metrics = {"loss": loss}
|
795 |
+
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
796 |
+
return metrics
|
797 |
+
|
798 |
+
# Create parallel version of the train and eval step
|
799 |
+
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
|
800 |
+
p_eval_step = jax.pmap(eval_step, "batch")
|
801 |
+
|
802 |
+
# Replicate the train state on each device
|
803 |
+
state = state.replicate()
|
804 |
+
|
805 |
+
logger.info("***** Running training *****")
|
806 |
+
logger.info(f" TPU = {jax.device_count()}")
|
807 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
808 |
+
logger.info(f" Num Epochs = {num_epochs}")
|
809 |
+
logger.info(
|
810 |
+
f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}"
|
811 |
+
)
|
812 |
+
logger.info(
|
813 |
+
f" Total train batch size (w. parallel & distributed) = {train_batch_size}"
|
814 |
+
)
|
815 |
+
logger.info(f" Total optimization steps = {total_train_steps}")
|
816 |
+
logger.info(f" Total warmup steps = {warmup_steps}")
|
817 |
+
|
818 |
+
train_time = 0
|
819 |
+
# Create sampling rng
|
820 |
+
rng, input_rng = jax.random.split(rng)
|
821 |
+
|
822 |
+
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
|
823 |
+
for epoch in epochs:
|
824 |
+
# ======================== Training ================================
|
825 |
+
train_start = time.time()
|
826 |
+
|
827 |
+
# Create sampling rng
|
828 |
+
rng, input_rng = jax.random.split(rng)
|
829 |
+
train_metrics = []
|
830 |
+
|
831 |
+
num_train_samples = len(train_dataset)
|
832 |
+
|
833 |
+
steps_per_epoch = len(train_dataset) // train_batch_size
|
834 |
+
train_step_progress_bar = tqdm(
|
835 |
+
total=steps_per_epoch, desc="Training...", position=1, leave=False
|
836 |
+
)
|
837 |
+
# train
|
838 |
+
for step, batch in enumerate(train_loader):
|
839 |
+
batch = shard(batch)
|
840 |
+
state, train_metric = p_train_step(state, batch)
|
841 |
+
train_metrics.append(train_metric)
|
842 |
+
|
843 |
+
train_step_progress_bar.update(1)
|
844 |
+
|
845 |
+
cur_step = epoch * (num_train_samples // train_batch_size) + step + 1
|
846 |
+
|
847 |
+
if cur_step % training_args.logging_steps == 0 and cur_step > 0:
|
848 |
+
train_time += time.time() - train_start
|
849 |
+
train_metric = unreplicate(train_metric)
|
850 |
+
|
851 |
+
# Save tensorboard metrics
|
852 |
+
if has_tensorboard and jax.process_index() == 0:
|
853 |
+
write_train_metric(
|
854 |
+
summary_writer, train_metrics, train_time, cur_step
|
855 |
+
)
|
856 |
+
|
857 |
+
# Save wandb metrics
|
858 |
+
if args.log_wandb and jax.process_index() == 0:
|
859 |
+
#_metrics = {k if k=="learning_rate" else f"train_{k}":mb_item(v.mean()) for k, v in train_metric.items()}
|
860 |
+
#_metrics = {k if k=="learning_rate" else f"train_{k}":mb_item(v.mean()) for k, v in train_metric.items()}
|
861 |
+
_metrics = {f'train_{k}': jax.device_get(v) for k,v in train_metric.items()}
|
862 |
+
wandb.log({"train_step":cur_step, **_metrics}, commit=True)
|
863 |
+
|
864 |
+
epochs.write(
|
865 |
+
f"Log at Step: {cur_step} (Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
|
866 |
+
)
|
867 |
+
|
868 |
+
logging.info("Emptying train metrics")
|
869 |
+
|
870 |
+
del train_metric
|
871 |
+
del train_metrics
|
872 |
+
train_metrics = []
|
873 |
+
|
874 |
+
gc.collect()
|
875 |
+
torch.cuda.empty_cache()
|
876 |
+
|
877 |
+
if cur_step % training_args.eval_steps == 0 and cur_step > 0:
|
878 |
+
# ======================== Evaluating ==============================
|
879 |
+
num_eval_samples = len(eval_dataset)
|
880 |
+
eval_metrics = []
|
881 |
+
eval_steps = len(eval_dataset) // eval_batch_size
|
882 |
+
eval_step_progress_bar = tqdm(
|
883 |
+
total=eval_steps, desc="Evaluating...", position=2, leave=False
|
884 |
+
)
|
885 |
+
for batch in eval_loader:
|
886 |
+
# Model forward
|
887 |
+
batch = shard(batch)
|
888 |
+
metrics = p_eval_step(state.params, batch)
|
889 |
+
eval_metrics.append(metrics)
|
890 |
+
|
891 |
+
eval_step_progress_bar.update(1)
|
892 |
+
|
893 |
+
# normalize eval metrics
|
894 |
+
eval_metrics = get_metrics(eval_metrics)
|
895 |
+
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
|
896 |
+
|
897 |
+
# Print metrics and update progress bar
|
898 |
+
desc = f"Eval at Step: {cur_step} (Loss: {eval_metrics['loss']})"
|
899 |
+
epochs.write(desc)
|
900 |
+
epochs.desc = desc
|
901 |
+
|
902 |
+
# Save tfboard eval
|
903 |
+
if has_tensorboard and jax.process_index() == 0:
|
904 |
+
write_eval_metric(summary_writer, eval_metrics, cur_step)
|
905 |
+
|
906 |
+
# Save eval wandb
|
907 |
+
if args.log_wandb and jax.process_index() == 0:
|
908 |
+
#_metrics = {f"eval_{k}":mb_item(v) for k, v in eval_metrics.items()}
|
909 |
+
_metrics = {f'eval_{k}': jax.device_get(v) for k,v in eval_metrics.items()}
|
910 |
+
wandb.log({"eval_step":cur_step, **_metrics})
|
911 |
+
|
912 |
+
logging.info("Emptying eval metrics")
|
913 |
+
del eval_metrics
|
914 |
+
|
915 |
+
eval_metrics = []
|
916 |
+
|
917 |
+
if cur_step % training_args.save_steps == 0 and cur_step > 0:
|
918 |
+
# save checkpoint after each epoch and push checkpoint to the hub
|
919 |
+
if jax.process_index() == 0:
|
920 |
+
# params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
921 |
+
# model.save_pretrained(
|
922 |
+
# training_args.output_dir,
|
923 |
+
# params=params,
|
924 |
+
# push_to_hub=training_args.push_to_hub,
|
925 |
+
# commit_message=f"Saving weights and logs of step {cur_step}",
|
926 |
+
# )
|
927 |
+
save_model_checkpoint(
|
928 |
+
model,
|
929 |
+
training_args.output_dir,
|
930 |
+
state,
|
931 |
+
logger,
|
932 |
+
training_args.push_to_hub_organization,
|
933 |
+
with_opt=True,
|
934 |
+
push_to_hub=training_args.push_to_hub,
|
935 |
+
overwrite=True,
|
936 |
+
)
|
937 |
+
# if model_args.save_optimizer:
|
938 |
+
# # this saves full state including optimizer
|
939 |
+
# save_checkpoint(training_args.output_dir, state, state.step, keep=training_args.save_total_limit, overwrite=True)
|
940 |
+
if training_args.save_total_limit is not None:
|
941 |
+
rotate_checkpoints(
|
942 |
+
training_args.output_dir,
|
943 |
+
training_args.save_total_limit,
|
944 |
+
logger,
|
945 |
+
)
|
946 |
+
|
947 |
+
train_step_progress_bar.close() #check
|
948 |
+
|
949 |
+
'''# save checkpoint after each epoch and push checkpoint to the hub
|
950 |
+
if jax.process_index() == 0:
|
951 |
+
params = jax.device_get(unreplicate(state.params))
|
952 |
+
model.save_pretrained(
|
953 |
+
training_args.output_dir + f"/{epoch+1}/",
|
954 |
+
params=params,
|
955 |
+
push_to_hub=training_args.push_to_hub,
|
956 |
+
commit_message=f"Saving weights and logs of epoch {epoch+1}",
|
957 |
+
)'''
|
958 |
+
|
959 |
+
# save model after training is over
|
960 |
+
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
961 |
+
model.save_pretrained(
|
962 |
+
training_args.output_dir,
|
963 |
+
params=params,
|
964 |
+
push_to_hub=training_args.push_to_hub,
|
965 |
+
commit_message="Add final model",
|
966 |
+
)
|
967 |
+
|
968 |
+
|
969 |
+
if __name__ == "__main__":
|
970 |
+
main()
|
971 |
+
|
hybrid_clip/run_training.sh
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
SCRIPT_DIR=.
|
4 |
+
MODEL_DIR=/mnt/disks/data-1/models/training_v4_unfreeze
|
5 |
+
|
6 |
+
IMAGE_ENCODER="openai/clip-vit-base-patch32"
|
7 |
+
TEXT_ENCODER="flax-community/indonesian-roberta-base"
|
8 |
+
|
9 |
+
python ${SCRIPT_DIR}/run_hybrid_clip.py \
|
10 |
+
--output_dir ${MODEL_DIR} \
|
11 |
+
--overwrite_output_dir \
|
12 |
+
--tokenizer_name=${TEXT_ENCODER} \
|
13 |
+
--train_file="../data/train_dataset_v6.json" \
|
14 |
+
--validation_file="../data/val_dataset_v6.json" \
|
15 |
+
--do_train --do_eval \
|
16 |
+
--num_train_epochs="20" --max_seq_length 96 \
|
17 |
+
--per_device_train_batch_size="64" \
|
18 |
+
--per_device_eval_batch_size="64" \
|
19 |
+
--learning_rate="0.00001" --warmup_ratio 0.1 --weight_decay 0.0 \
|
20 |
+
--preprocessing_num_workers 16 \
|
21 |
+
--exp_name training_v4_unfreeze \
|
22 |
+
--text_model_name_or_path=${TEXT_ENCODER} \
|
23 |
+
--vision_model_name_or_path=${IMAGE_ENCODER} \
|
24 |
+
--eval_steps 500 \
|
25 |
+
--logging_steps 100 \
|
26 |
+
--save_steps 500 \
|
27 |
+
--save_total_limit 5 \
|
28 |
+
--log_wandb \
|
29 |
+
--run_from_checkpoint="/mnt/disks/data-1/models/training_v4/ckpt-70999" # edit
|
30 |
+
#--freeze_backbones
|
31 |
+
#--push_to_hub
|
hybrid_clip/run_training_backup.sh
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
SCRIPT_DIR=.
|
4 |
+
MODEL_DIR=~/models/training_v3_new
|
5 |
+
|
6 |
+
IMAGE_ENCODER="openai/clip-vit-base-patch32"
|
7 |
+
TEXT_ENCODER="indobenchmark/indobert-base-p2"
|
8 |
+
|
9 |
+
python ${SCRIPT_DIR}/run_hybrid_clip.py \
|
10 |
+
--output_dir ${MODEL_DIR} \
|
11 |
+
--overwrite_output_dir \
|
12 |
+
--tokenizer_name=${TEXT_ENCODER} \
|
13 |
+
--train_file="../data/train_dataset_v3.json" \
|
14 |
+
--validation_file="../data/val_dataset_v3.json" \
|
15 |
+
--do_train --do_eval \
|
16 |
+
--num_train_epochs="10" --max_seq_length 96 \
|
17 |
+
--per_device_train_batch_size="64" \
|
18 |
+
--per_device_eval_batch_size="64" \
|
19 |
+
--learning_rate="0.00005" --warmup_ratio 0.1 --weight_decay 0.0 \
|
20 |
+
--preprocessing_num_workers 16 \
|
21 |
+
--exp_name training_v3 \
|
22 |
+
--text_model_name_or_path=${TEXT_ENCODER} \
|
23 |
+
--vision_model_name_or_path=${IMAGE_ENCODER} \
|
24 |
+
--eval_steps 2500 \
|
25 |
+
--logging_steps 200 \
|
26 |
+
--save_steps 2500 \
|
27 |
+
--save_total_limit 5 \
|
28 |
+
--log_wandb \
|
29 |
+
--freeze_backbones
|
30 |
+
#--push_to_hub
|
hybrid_clip/run_training_unfreeze.sh
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
SCRIPT_DIR=.
|
4 |
+
MODEL_DIR=~/models/training_v3_new_unfreeze
|
5 |
+
|
6 |
+
IMAGE_ENCODER="openai/clip-vit-base-patch32"
|
7 |
+
TEXT_ENCODER="indobenchmark/indobert-base-p2"
|
8 |
+
|
9 |
+
python ${SCRIPT_DIR}/run_hybrid_clip.py \
|
10 |
+
--output_dir ${MODEL_DIR} \
|
11 |
+
--overwrite_output_dir \
|
12 |
+
--tokenizer_name=${TEXT_ENCODER} \
|
13 |
+
--train_file="../data/train_dataset_v3.json" \
|
14 |
+
--validation_file="../data/val_dataset_v3.json" \
|
15 |
+
--do_train --do_eval \
|
16 |
+
--num_train_epochs="10" --max_seq_length 96 \
|
17 |
+
--per_device_train_batch_size="64" \
|
18 |
+
--per_device_eval_batch_size="64" \
|
19 |
+
--learning_rate="0.00005" --warmup_ratio 0.1 --weight_decay 0.0 \
|
20 |
+
--preprocessing_num_workers 16 \
|
21 |
+
--exp_name training_v3_unfreeze \
|
22 |
+
--text_model_name_or_path=${TEXT_ENCODER} \
|
23 |
+
--vision_model_name_or_path=${IMAGE_ENCODER} \
|
24 |
+
--eval_steps 2500 \
|
25 |
+
--logging_steps 200 \
|
26 |
+
--save_steps 2500 \
|
27 |
+
--save_total_limit 5 \
|
28 |
+
--log_wandb \
|
29 |
+
--run_from_checkpoint="../../models/training_v3_new/ckpt-42499"
|
30 |
+
#--freeze_backbones
|
31 |
+
#--push_to_hub
|
hybrid_clip/run_training_unfreeze_2.sh
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
SCRIPT_DIR=.
|
4 |
+
MODEL_DIR=~/models/training_v3_new_unfreeze_2
|
5 |
+
|
6 |
+
IMAGE_ENCODER="openai/clip-vit-base-patch32"
|
7 |
+
TEXT_ENCODER="indobenchmark/indobert-base-p2"
|
8 |
+
|
9 |
+
python ${SCRIPT_DIR}/run_hybrid_clip.py \
|
10 |
+
--output_dir ${MODEL_DIR} \
|
11 |
+
--overwrite_output_dir \
|
12 |
+
--tokenizer_name=${TEXT_ENCODER} \
|
13 |
+
--train_file="../data/train_dataset_v3.json" \
|
14 |
+
--validation_file="../data/val_dataset_v3.json" \
|
15 |
+
--do_train --do_eval \
|
16 |
+
--num_train_epochs="10" --max_seq_length 96 \
|
17 |
+
--per_device_train_batch_size="64" \
|
18 |
+
--per_device_eval_batch_size="64" \
|
19 |
+
--learning_rate="0.00005" --warmup_ratio 0.1 --weight_decay 0.0 \
|
20 |
+
--preprocessing_num_workers 16 \
|
21 |
+
--exp_name training_v3_unfreeze_2 \
|
22 |
+
--text_model_name_or_path=${TEXT_ENCODER} \
|
23 |
+
--vision_model_name_or_path=${IMAGE_ENCODER} \
|
24 |
+
--eval_steps 2500 \
|
25 |
+
--logging_steps 200 \
|
26 |
+
--save_steps 2500 \
|
27 |
+
--save_total_limit 5 \
|
28 |
+
--log_wandb \
|
29 |
+
--run_from_checkpoint="../../models/training_v3_new_unfreeze/ckpt-12499"
|
30 |
+
#--freeze_backbones
|
31 |
+
#--push_to_hub
|