File size: 5,330 Bytes
ab2ad71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
---
language: "en"
thumbnail:
tags:
- ASR
- CTC
- Attention
- pytorch
license: "apache-2.0"
datasets:
- librispeech
metrics:
- wer
- cer
---
# CRDNN with CTC/Attention and RNNLM trained on LibriSpeech
This repository provides all the necessary tools to perform automatic speech
recognition from an end-to-end system pretrained on LibriSpeech (EN) within
SpeechBrain. For a better experience we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The given ASR model performance are:
| Release | hyperparams file | Test WER | Model link | GPUs |
|:-------------:|:---------------------------:| -----:| -----:| --------:|
| 20-05-22 | BPE_1000.yaml | 3.08 | Not Available | 1xV100 32GB |
| 20-05-22 | BPE_5000.yaml | 2.89 | Not Available | 1xV100 32GB |
## Pipeline description
This ASR system is composed with 3 different but linked blocks:
1. Tokenizer (unigram) that transforms words into subword units and trained with
the train transcriptions of LibriSpeech.
2. Neural language model (RNNLM) trained on the full 10M words dataset.
3. Acoustic model (CRDNN + CTC/Attention). The CRDNN architecture is made of
N blocks of convolutional neural networks with normalisation and pooling on the
frequency domain. Then, a bidirectional LSTM is connected to a final DNN to obtain
the final acoustic representation that is given to the CTC and attention decoders.
## Intended uses & limitations
This model has been primilarly developed to be run within SpeechBrain as a pretrained ASR model
for the english language. Thanks to the flexibility of SpeechBrain, any of the 3 blocks
detailed above can be extracted and connected to you custom pipeline as long as SpeechBrain is
installed.
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install \\we hide ! SpeechBrain is still private :p
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Transcribing your own audio files
```python
import torch
import torchaudio
import speechbrain
from speechbrain.lobes.pretrained.librispeech.asr_crdnn_ctc_att_rnnlm.acoustic import ASR
asr_model = ASR()
# Make sure your output is sampled at 16 kHz.
audio_file='path_to_your_audio_file'
wav, fs = torchaudio.load(audio_file)
wav_lens = torch.tensor([1]).float()
# Transcribe!
words, tokens = asr_model.transcribe(wav, wav_lens)
print(words)
```
### Obtaining encoded features
The SpeechBrain ASR() Class provides an easy way to encode the speech signal
without running the decoding phase. Hence, one can obtain the output of the
CRDNN model.
```python
import torch
import torchaudio
import speechbrain
from speechbrain.lobes.pretrained.librispeech.asr_crdnn_ctc_att_rnnlm.acoustic import ASR
asr_model = ASR()
# Make sure your output is sampled at 16 kHz.
audio_file='path_to_your_audio_file'
wav, fs = torchaudio.load(audio_file)
wav_lens = torch.tensor([1]).float()
# Transcribe!
words, tokens = asr_model.encode(wav, wav_lens)
print(words)
```
### Playing with the language model only
Thanks to SpeechBrain lobes, it is feasible to simply instantiate the language
model to further processing on your custom pipeline:
```python
import torch
import speechbrain
from speechbrain.lobes.pretrained.librispeech.asr_crdnn_ctc_att_rnnlm.lm import LM
lm = LM()
text = "THE CAT IS ON"
# Next word prediction
encoded_text = lm.tokenizer.encode_as_ids(text)
encoded_text = torch.Tensor(encoded_text).unsqueeze(0)
prob_out, _ = lm(encoded_text.to(lm.device))
index = int(torch.argmax(prob_out[0,-1,:]))
print(lm.tokenizer.decode(index))
# Text generation
encoded_text = torch.tensor([0, 2]) # bos token + the
encoded_text = encoded_text.unsqueeze(0).to(lm.device)
for i in range(19):
prob_out, _ = lm(encoded_text)
index = torch.argmax(prob_out[0,-1,:]).unsqueeze(0)
encoded_text = torch.cat([encoded_text, index.unsqueeze(0)], dim=1)
encoded_text = encoded_text[0,1:].tolist()
print(lm.tokenizer.decode(encoded_text))
```
### Playing with the tokenizer only
In the same manner as for the language model, one can isntantiate the tokenizer
only with the corresponding lobes in SpeechBrain.
```python
import speechbrain
from speechbrain.lobes.pretrained.librispeech.asr_crdnn_ctc_att_rnnlm.tokenizer import tokenizer
# HuggingFace paths to download the pretrained models
token_file = 'tokenizer/1000_unigram.model'
model_name = 'sb/asr-crdnn-librispeech'
save_dir = 'model_checkpoints'
text = "THE CAT IS ON THE TABLE"
tokenizer = tokenizer(token_file, model_name, save_dir)
# Tokenize!
print(tokenizer.spm.encode(text))
print(tokenizer.spm.encode(text, out_type='str'))
```
#### Referencing SpeechBrain
```
@misc{SB2021,
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
title = {SpeechBrain},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/speechbrain/speechbrain}},
}
```
|