Aku Rouhe
commited on
Commit
·
fec6d06
1
Parent(s):
934b4ef
Change instructions
Browse files
README.md
CHANGED
@@ -58,105 +58,19 @@ Please notice that we encourage you to read our tutorials and learn more about
|
|
58 |
### Transcribing your own audio files
|
59 |
|
60 |
```python
|
61 |
-
import
|
62 |
-
import torchaudio
|
63 |
-
import speechbrain
|
64 |
-
from speechbrain.lobes.pretrained.librispeech.asr_crdnn_ctc_att_rnnlm.acoustic import ASR
|
65 |
|
66 |
-
asr_model =
|
67 |
-
|
68 |
-
# Make sure your output is sampled at 16 kHz.
|
69 |
-
audio_file='path_to_your_audio_file'
|
70 |
-
wav, fs = torchaudio.load(audio_file)
|
71 |
-
wav_lens = torch.tensor([1]).float()
|
72 |
-
|
73 |
-
# Transcribe!
|
74 |
-
words, tokens = asr_model.transcribe(wav, wav_lens)
|
75 |
-
print(words)
|
76 |
|
77 |
```
|
78 |
|
79 |
### Obtaining encoded features
|
80 |
|
81 |
-
The SpeechBrain
|
82 |
-
without running the decoding phase
|
83 |
-
|
84 |
-
|
85 |
-
```python
|
86 |
-
import torch
|
87 |
-
import torchaudio
|
88 |
-
import speechbrain
|
89 |
-
from speechbrain.lobes.pretrained.librispeech.asr_crdnn_ctc_att_rnnlm.acoustic import ASR
|
90 |
-
|
91 |
-
asr_model = ASR()
|
92 |
-
|
93 |
-
# Make sure your output is sampled at 16 kHz.
|
94 |
-
audio_file='path_to_your_audio_file'
|
95 |
-
wav, fs = torchaudio.load(audio_file)
|
96 |
-
wav_lens = torch.tensor([1]).float()
|
97 |
-
|
98 |
-
# Transcribe!
|
99 |
-
words, tokens = asr_model.encode(wav, wav_lens)
|
100 |
-
print(words)
|
101 |
-
|
102 |
-
```
|
103 |
-
|
104 |
-
### Playing with the language model only
|
105 |
-
|
106 |
-
Thanks to SpeechBrain lobes, it is feasible to simply instantiate the language
|
107 |
-
model to further processing on your custom pipeline:
|
108 |
-
|
109 |
-
```python
|
110 |
-
import torch
|
111 |
-
import speechbrain
|
112 |
-
from speechbrain.lobes.pretrained.librispeech.asr_crdnn_ctc_att_rnnlm.lm import LM
|
113 |
-
|
114 |
-
lm = LM()
|
115 |
-
|
116 |
-
text = "THE CAT IS ON"
|
117 |
-
|
118 |
-
# Next word prediction
|
119 |
-
encoded_text = lm.tokenizer.encode_as_ids(text)
|
120 |
-
encoded_text = torch.Tensor(encoded_text).unsqueeze(0)
|
121 |
-
prob_out, _ = lm(encoded_text.to(lm.device))
|
122 |
-
index = int(torch.argmax(prob_out[0,-1,:]))
|
123 |
-
print(lm.tokenizer.decode(index))
|
124 |
-
|
125 |
-
# Text generation
|
126 |
-
encoded_text = torch.tensor([0, 2]) # bos token + the
|
127 |
-
encoded_text = encoded_text.unsqueeze(0).to(lm.device)
|
128 |
-
for i in range(19):
|
129 |
-
prob_out, _ = lm(encoded_text)
|
130 |
-
index = torch.argmax(prob_out[0,-1,:]).unsqueeze(0)
|
131 |
-
encoded_text = torch.cat([encoded_text, index.unsqueeze(0)], dim=1)
|
132 |
-
encoded_text = encoded_text[0,1:].tolist()
|
133 |
-
print(lm.tokenizer.decode(encoded_text))
|
134 |
-
|
135 |
-
```
|
136 |
-
|
137 |
-
### Playing with the tokenizer only
|
138 |
-
|
139 |
-
In the same manner as for the language model, one can isntantiate the tokenizer
|
140 |
-
only with the corresponding lobes in SpeechBrain.
|
141 |
-
|
142 |
-
```python
|
143 |
-
import speechbrain
|
144 |
-
from speechbrain.lobes.pretrained.librispeech.asr_crdnn_ctc_att_rnnlm.tokenizer import tokenizer
|
145 |
-
|
146 |
-
# HuggingFace paths to download the pretrained models
|
147 |
-
token_file = 'tokenizer/1000_unigram.model'
|
148 |
-
model_name = 'sb/asr-crdnn-librispeech'
|
149 |
-
save_dir = 'model_checkpoints'
|
150 |
-
|
151 |
-
text = "THE CAT IS ON THE TABLE"
|
152 |
|
153 |
-
tokenizer = tokenizer(token_file, model_name, save_dir)
|
154 |
-
|
155 |
-
# Tokenize!
|
156 |
-
print(tokenizer.spm.encode(text))
|
157 |
-
print(tokenizer.spm.encode(text, out_type='str'))
|
158 |
-
|
159 |
-
```
|
160 |
|
161 |
#### Referencing SpeechBrain
|
162 |
|
|
|
58 |
### Transcribing your own audio files
|
59 |
|
60 |
```python
|
61 |
+
from speechbrain.pretrained import EncoderDecoderASR
|
|
|
|
|
|
|
62 |
|
63 |
+
asr_model = EncoderDecoderASR.from_hparams(source="Gastron/asr-crdnn-librispeech")
|
64 |
+
asr_model.transcribe_file("path_to_your_file.wav")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
```
|
67 |
|
68 |
### Obtaining encoded features
|
69 |
|
70 |
+
The SpeechBrain EncoderDecoderASR() class also provides an easy way to encode
|
71 |
+
the speech signal without running the decoding phase by calling
|
72 |
+
``EncoderDecoderASR.encode_batch()``
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
#### Referencing SpeechBrain
|
76 |
|