File size: 17,470 Bytes
ad947b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
from .DiffAE_model_blocks import ScaleAt
from .DiffAE_model import *
from .DiffAE_diffusion_resample import UniformSampler
from .DiffAE_diffusion_diffusion import space_timesteps
from typing import Tuple

from torch.utils.data import DataLoader

from .DiffAE_support_config_base import BaseConfig
from .DiffAE_support_choices import GenerativeType, LossType, ModelMeanType, ModelVarType
from .DiffAE_diffusion_base import get_named_beta_schedule
from .DiffAE_support_choices import *
from .DiffAE_diffusion_diffusion import SpacedDiffusionBeatGansConfig
from multiprocessing import get_context
import os
from torch.utils.data.distributed import DistributedSampler

from dataclasses import dataclass

data_paths = {
    'ffhqlmdb256':
    os.path.expanduser('datasets/ffhq256.lmdb'),
    # used for training a classifier
    'celeba':
    os.path.expanduser('datasets/celeba'),
    # used for training DPM models
    'celebalmdb':
    os.path.expanduser('datasets/celeba.lmdb'),
    'celebahq':
    os.path.expanduser('datasets/celebahq256.lmdb'),
    'horse256':
    os.path.expanduser('datasets/horse256.lmdb'),
    'bedroom256':
    os.path.expanduser('datasets/bedroom256.lmdb'),
    'celeba_anno':
    os.path.expanduser('datasets/celeba_anno/list_attr_celeba.txt'),
    'celebahq_anno':
    os.path.expanduser(
        'datasets/celeba_anno/CelebAMask-HQ-attribute-anno.txt'),
    'celeba_relight':
    os.path.expanduser('datasets/celeba_hq_light/celeba_light.txt'),
}


@dataclass
class PretrainConfig(BaseConfig):
    name: str
    path: str


@dataclass
class TrainConfig(BaseConfig):
    #new params added (Soumick)
    n_dims: int = 2
    in_channels: int = 3
    out_channels: int = 3
    group_norm_limit: int = 32

    # random seed
    seed: int = 0
    train_mode: TrainMode = TrainMode.diffusion
    train_cond0_prob: float = 0
    train_pred_xstart_detach: bool = True
    train_interpolate_prob: float = 0
    train_interpolate_img: bool = False
    manipulate_mode: ManipulateMode = ManipulateMode.celebahq_all
    manipulate_cls: str = None
    manipulate_shots: int = None
    manipulate_loss: ManipulateLossType = ManipulateLossType.bce
    manipulate_znormalize: bool = False
    manipulate_seed: int = 0
    accum_batches: int = 1
    autoenc_mid_attn: bool = True
    batch_size: int = 16
    batch_size_eval: int = None
    beatgans_gen_type: GenerativeType = GenerativeType.ddim
    beatgans_loss_type: LossType = LossType.mse
    beatgans_model_mean_type: ModelMeanType = ModelMeanType.eps
    beatgans_model_var_type: ModelVarType = ModelVarType.fixed_large
    beatgans_rescale_timesteps: bool = False
    latent_infer_path: str = None
    latent_znormalize: bool = False
    latent_gen_type: GenerativeType = GenerativeType.ddim
    latent_loss_type: LossType = LossType.mse
    latent_model_mean_type: ModelMeanType = ModelMeanType.eps
    latent_model_var_type: ModelVarType = ModelVarType.fixed_large
    latent_rescale_timesteps: bool = False
    latent_T_eval: int = 1_000
    latent_clip_sample: bool = False
    latent_beta_scheduler: str = 'linear'
    beta_scheduler: str = 'linear'
    data_name: str = ''
    data_val_name: str = None
    diffusion_type: str = None
    dropout: float = 0.1
    ema_decay: float = 0.9999
    eval_num_images: int = 5_000
    eval_every_samples: int = 200_000
    eval_ema_every_samples: int = 200_000
    fid_use_torch: bool = True
    fp16: bool = False
    grad_clip: float = 1
    img_size: int = 64
    lr: float = 0.0001
    optimizer: OptimizerType = OptimizerType.adam
    weight_decay: float = 0
    model_conf: ModelConfig = None
    model_name: ModelName = None
    model_type: ModelType = None
    net_attn: Tuple[int] = None
    net_beatgans_attn_head: int = 1
    # not necessarily the same as the the number of style channels
    net_beatgans_embed_channels: int = 512
    net_resblock_updown: bool = True
    net_enc_use_time: bool = False
    net_enc_pool: str = 'adaptivenonzero'
    net_beatgans_gradient_checkpoint: bool = False
    net_beatgans_resnet_two_cond: bool = False
    net_beatgans_resnet_use_zero_module: bool = True
    net_beatgans_resnet_scale_at: ScaleAt = ScaleAt.after_norm
    net_beatgans_resnet_cond_channels: int = None
    net_ch_mult: Tuple[int] = None
    net_ch: int = 64
    net_enc_attn: Tuple[int] = None
    net_enc_k: int = None
    # number of resblocks for the encoder (half-unet)
    net_enc_num_res_blocks: int = 2
    net_enc_channel_mult: Tuple[int] = None
    net_enc_grad_checkpoint: bool = False
    net_autoenc_stochastic: bool = False
    net_latent_activation: Activation = Activation.silu
    net_latent_channel_mult: Tuple[int] = (1, 2, 4)
    net_latent_condition_bias: float = 0
    net_latent_dropout: float = 0
    net_latent_layers: int = None
    net_latent_net_last_act: Activation = Activation.none
    net_latent_net_type: LatentNetType = LatentNetType.none
    net_latent_num_hid_channels: int = 1024
    net_latent_num_time_layers: int = 2
    net_latent_skip_layers: Tuple[int] = None
    net_latent_time_emb_channels: int = 64
    net_latent_use_norm: bool = False
    net_latent_time_last_act: bool = False
    net_num_res_blocks: int = 2
    # number of resblocks for the UNET
    net_num_input_res_blocks: int = None
    net_enc_num_cls: int = None
    num_workers: int = 4
    parallel: bool = False
    postfix: str = ''
    sample_size: int = 64
    sample_every_samples: int = 20_000
    save_every_samples: int = 100_000
    style_ch: int = 512
    T_eval: int = 1_000
    T_sampler: str = 'uniform'
    T: int = 1_000
    total_samples: int = 10_000_000
    warmup: int = 0
    pretrain: PretrainConfig = None
    continue_from: PretrainConfig = None
    eval_programs: Tuple[str] = None
    # if present load the checkpoint from this path instead
    eval_path: str = None
    base_dir: str = 'checkpoints'
    use_cache_dataset: bool = False
    data_cache_dir: str = os.path.expanduser('~/cache')
    work_cache_dir: str = os.path.expanduser('~/mycache')
    # to be overridden
    name: str = ''

    def refresh_values(self):
        self.img_size = max(self.input_shape)
        self.n_dims = 3 if self.is3D else 2
        self.group_norm_limit = min(32, self.net_ch)

    def __post_init__(self):
        self.batch_size_eval = self.batch_size_eval or self.batch_size
        self.data_val_name = self.data_val_name or self.data_name

    def scale_up_gpus(self, num_gpus, num_nodes=1):
        self.eval_ema_every_samples *= num_gpus * num_nodes
        self.eval_every_samples *= num_gpus * num_nodes
        self.sample_every_samples *= num_gpus * num_nodes
        self.batch_size *= num_gpus * num_nodes
        self.batch_size_eval *= num_gpus * num_nodes
        return self

    @property
    def batch_size_effective(self):
        return self.batch_size * self.accum_batches

    @property
    def fid_cache(self):
        # we try to use the local dirs to reduce the load over network drives
        # hopefully, this would reduce the disconnection problems with sshfs
        return f'{self.work_cache_dir}/eval_images/{self.data_name}_size{self.img_size}_{self.eval_num_images}'

    @property
    def data_path(self):
        # may use the cache dir
        path = data_paths[self.data_name]
        if self.use_cache_dataset and path is not None:
            path = use_cached_dataset_path(
                path, f'{self.data_cache_dir}/{self.data_name}')
        return path

    @property
    def logdir(self):
        return f'{self.base_dir}/{self.name}'

    @property
    def generate_dir(self):
        # we try to use the local dirs to reduce the load over network drives
        # hopefully, this would reduce the disconnection problems with sshfs
        return f'{self.work_cache_dir}/gen_images/{self.name}'

    def _make_diffusion_conf(self, T=None):
        if self.diffusion_type == 'beatgans':
            # can use T < self.T for evaluation
            # follows the guided-diffusion repo conventions
            # t's are evenly spaced
            if self.beatgans_gen_type == GenerativeType.ddpm:
                section_counts = [T]
            elif self.beatgans_gen_type == GenerativeType.ddim:
                section_counts = f'ddim{T}'
            else:
                raise NotImplementedError()

            return SpacedDiffusionBeatGansConfig(
                gen_type=self.beatgans_gen_type,
                model_type=self.model_type,
                betas=get_named_beta_schedule(self.beta_scheduler, self.T),
                model_mean_type=self.beatgans_model_mean_type,
                model_var_type=self.beatgans_model_var_type,
                loss_type=self.beatgans_loss_type,
                rescale_timesteps=self.beatgans_rescale_timesteps,
                use_timesteps=space_timesteps(num_timesteps=self.T,
                                              section_counts=section_counts),
                fp16=self.fp16,
            )
        else:
            raise NotImplementedError()

    def _make_latent_diffusion_conf(self, T=None):
        # can use T < self.T for evaluation
        # follows the guided-diffusion repo conventions
        # t's are evenly spaced
        if self.latent_gen_type == GenerativeType.ddpm:
            section_counts = [T]
        elif self.latent_gen_type == GenerativeType.ddim:
            section_counts = f'ddim{T}'
        else:
            raise NotImplementedError()

        return SpacedDiffusionBeatGansConfig(
            train_pred_xstart_detach=self.train_pred_xstart_detach,
            gen_type=self.latent_gen_type,
            # latent's model is always ddpm
            model_type=ModelType.ddpm,
            # latent shares the beta scheduler and full T
            betas=get_named_beta_schedule(self.latent_beta_scheduler, self.T),
            model_mean_type=self.latent_model_mean_type,
            model_var_type=self.latent_model_var_type,
            loss_type=self.latent_loss_type,
            rescale_timesteps=self.latent_rescale_timesteps,
            use_timesteps=space_timesteps(num_timesteps=self.T,
                                          section_counts=section_counts),
            fp16=self.fp16,
        )

    @property
    def model_out_channels(self):
        return self.out_channels

    def make_T_sampler(self):
        if self.T_sampler == 'uniform':
            return UniformSampler(self.T)
        else:
            raise NotImplementedError()

    def make_diffusion_conf(self):
        return self._make_diffusion_conf(self.T)

    def make_eval_diffusion_conf(self):
        return self._make_diffusion_conf(T=self.T_eval)

    def make_latent_diffusion_conf(self):
        return self._make_latent_diffusion_conf(T=self.T)

    def make_latent_eval_diffusion_conf(self):
        # latent can have different eval T
        return self._make_latent_diffusion_conf(T=self.latent_T_eval)

    def make_dataset(self, path=None, **kwargs):
        if self.data_name == 'ffhqlmdb256':
            return FFHQlmdb(path=path or self.data_path,
                            image_size=self.img_size,
                            **kwargs)
        elif self.data_name == 'horse256':
            return Horse_lmdb(path=path or self.data_path,
                              image_size=self.img_size,
                              **kwargs)
        elif self.data_name == 'bedroom256':
            return Horse_lmdb(path=path or self.data_path,
                              image_size=self.img_size,
                              **kwargs)
        elif self.data_name == 'celebalmdb':
            # always use d2c crop
            return CelebAlmdb(path=path or self.data_path,
                              image_size=self.img_size,
                              original_resolution=None,
                              crop_d2c=True,
                              **kwargs)
        else:
            raise NotImplementedError()

    def make_loader(self,
                    dataset,
                    shuffle: bool,
                    num_worker: bool = None,
                    drop_last: bool = True,
                    batch_size: int = None,
                    parallel: bool = False):
        if parallel and distributed.is_initialized():
            # drop last to make sure that there is no added special indexes
            sampler = DistributedSampler(dataset,
                                         shuffle=shuffle,
                                         drop_last=True)
        else:
            sampler = None
        return DataLoader(
            dataset,
            batch_size=batch_size or self.batch_size,
            sampler=sampler,
            # with sampler, use the sample instead of this option
            shuffle=False if sampler else shuffle,
            num_workers=num_worker or self.num_workers,
            pin_memory=True,
            drop_last=drop_last,
            multiprocessing_context=get_context('fork'),
        )

    def make_model_conf(self):
        if self.model_name == ModelName.beatgans_ddpm:
            self.model_type = ModelType.ddpm
            self.model_conf = BeatGANsUNetConfig(
                attention_resolutions=self.net_attn,
                channel_mult=self.net_ch_mult,
                conv_resample=True,
                group_norm_limit=self.group_norm_limit,
                dims=self.n_dims,
                dropout=self.dropout,
                embed_channels=self.net_beatgans_embed_channels,
                image_size=self.img_size,
                in_channels=self.in_channels,
                model_channels=self.net_ch,
                num_classes=None,
                num_head_channels=-1,
                num_heads_upsample=-1,
                num_heads=self.net_beatgans_attn_head,
                num_res_blocks=self.net_num_res_blocks,
                num_input_res_blocks=self.net_num_input_res_blocks,
                out_channels=self.model_out_channels,
                resblock_updown=self.net_resblock_updown,
                use_checkpoint=self.net_beatgans_gradient_checkpoint,
                use_new_attention_order=False,
                resnet_two_cond=self.net_beatgans_resnet_two_cond,
                resnet_use_zero_module=self.
                net_beatgans_resnet_use_zero_module,
            )
        elif self.model_name in [
                ModelName.beatgans_autoenc,
        ]:
            cls = BeatGANsAutoencConfig
            # supports both autoenc and vaeddpm
            if self.model_name == ModelName.beatgans_autoenc:
                self.model_type = ModelType.autoencoder
            else:
                raise NotImplementedError()

            if self.net_latent_net_type == LatentNetType.none:
                latent_net_conf = None
            elif self.net_latent_net_type == LatentNetType.skip:
                latent_net_conf = MLPSkipNetConfig(
                    num_channels=self.style_ch,
                    skip_layers=self.net_latent_skip_layers,
                    num_hid_channels=self.net_latent_num_hid_channels,
                    num_layers=self.net_latent_layers,
                    num_time_emb_channels=self.net_latent_time_emb_channels,
                    activation=self.net_latent_activation,
                    use_norm=self.net_latent_use_norm,
                    condition_bias=self.net_latent_condition_bias,
                    dropout=self.net_latent_dropout,
                    last_act=self.net_latent_net_last_act,
                    num_time_layers=self.net_latent_num_time_layers,
                    time_last_act=self.net_latent_time_last_act,
                )
            else:
                raise NotImplementedError()

            self.model_conf = cls(
                attention_resolutions=self.net_attn,
                channel_mult=self.net_ch_mult,
                conv_resample=True,
                group_norm_limit=self.group_norm_limit,
                dims=self.n_dims,
                dropout=self.dropout,
                embed_channels=self.net_beatgans_embed_channels,
                enc_out_channels=self.style_ch,
                enc_pool=self.net_enc_pool,
                enc_num_res_block=self.net_enc_num_res_blocks,
                enc_channel_mult=self.net_enc_channel_mult,
                enc_grad_checkpoint=self.net_enc_grad_checkpoint,
                enc_attn_resolutions=self.net_enc_attn,
                image_size=self.img_size,
                in_channels=self.in_channels,
                model_channels=self.net_ch,
                num_classes=None,
                num_head_channels=-1,
                num_heads_upsample=-1,
                num_heads=self.net_beatgans_attn_head,
                num_res_blocks=self.net_num_res_blocks,
                num_input_res_blocks=self.net_num_input_res_blocks,
                out_channels=self.model_out_channels,
                resblock_updown=self.net_resblock_updown,
                use_checkpoint=self.net_beatgans_gradient_checkpoint,
                use_new_attention_order=False,
                resnet_two_cond=self.net_beatgans_resnet_two_cond,
                resnet_use_zero_module=self.
                net_beatgans_resnet_use_zero_module,
                latent_net_conf=latent_net_conf,
                resnet_cond_channels=self.net_beatgans_resnet_cond_channels,
            )
        else:
            raise NotImplementedError(self.model_name)

        return self.model_conf