Isaak Carter Augustus commited on
Commit
34cb780
·
verified ·
1 Parent(s): cd19a10

Delete configuration_minicpm.py

Browse files
Files changed (1) hide show
  1. configuration_minicpm.py +0 -202
configuration_minicpm.py DELETED
@@ -1,202 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
- # and OPT implementations in this library. It has been modified from its
6
- # original forms to accommodate minor architectural differences compared
7
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
- #
9
- # Licensed under the Apache License, Version 2.0 (the "License");
10
- # you may not use this file except in compliance with the License.
11
- # You may obtain a copy of the License at
12
- #
13
- # http://www.apache.org/licenses/LICENSE-2.0
14
- #
15
- # Unless required by applicable law or agreed to in writing, software
16
- # distributed under the License is distributed on an "AS IS" BASIS,
17
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
- # See the License for the specific language governing permissions and
19
- # limitations under the License.
20
- """ MiniCPM model configuration"""
21
-
22
- from transformers.configuration_utils import PretrainedConfig
23
- from transformers.utils import logging
24
-
25
-
26
- logger = logging.get_logger(__name__)
27
-
28
- MINICPM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
29
-
30
-
31
- class MiniCPMConfig(PretrainedConfig):
32
- r"""
33
- This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM
34
- model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
- defaults will yield a similar configuration to that of the MiniCPM-7B.
36
-
37
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
- documentation from [`PretrainedConfig`] for more information.
39
-
40
-
41
- Args:
42
- vocab_size (`int`, *optional*, defaults to 32000):
43
- Vocabulary size of the MiniCPM model. Defines the number of different tokens that can be represented by the
44
- `inputs_ids` passed when calling [`MiniCPMModel`]
45
- hidden_size (`int`, *optional*, defaults to 4096):
46
- Dimension of the hidden representations.
47
- intermediate_size (`int`, *optional*, defaults to 11008):
48
- Dimension of the MLP representations.
49
- num_hidden_layers (`int`, *optional*, defaults to 32):
50
- Number of hidden layers in the Transformer decoder.
51
- num_attention_heads (`int`, *optional*, defaults to 32):
52
- Number of attention heads for each attention layer in the Transformer decoder.
53
- num_key_value_heads (`int`, *optional*):
54
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
- `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
- by meanpooling all the original heads within that group. For more details checkout [this
59
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
60
- `num_attention_heads`.
61
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
62
- The non-linear activation function (function or string) in the decoder.
63
- max_position_embeddings (`int`, *optional*, defaults to 2048):
64
- The maximum sequence length that this model might ever be used with. MiniCPM 1 supports up to 2048 tokens,
65
- MiniCPM 2 up to 4096, CodeMiniCPM up to 16384.
66
- initializer_range (`float`, *optional*, defaults to 0.02):
67
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
68
- rms_norm_eps (`float`, *optional*, defaults to 1e-06):
69
- The epsilon used by the rms normalization layers.
70
- use_cache (`bool`, *optional*, defaults to `True`):
71
- Whether or not the model should return the last key/values attentions (not used by all models). Only
72
- relevant if `config.is_decoder=True`.
73
- pad_token_id (`int`, *optional*):
74
- Padding token id.
75
- bos_token_id (`int`, *optional*, defaults to 1):
76
- Beginning of stream token id.
77
- eos_token_id (`int`, *optional*, defaults to 2):
78
- End of stream token id.
79
- pretraining_tp (`int`, *optional*, defaults to 1):
80
- Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
81
- document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
82
- necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
83
- issue](https://github.com/pytorch/pytorch/issues/76232).
84
- tie_word_embeddings (`bool`, *optional*, defaults to `False`):
85
- Whether to tie weight embeddings
86
- rope_theta (`float`, *optional*, defaults to 10000.0):
87
- The base period of the RoPE embeddings.
88
- rope_scaling (`Dict`, *optional*):
89
- Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
90
- strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
91
- `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
92
- `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
93
- these scaling strategies behave:
94
- https://www.reddit.com/r/LocalMiniCPM/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
95
- experimental feature, subject to breaking API changes in future versions.
96
- attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
97
- Whether to use a bias in the query, key, value and output projection layers during self-attention.
98
- attention_dropout (`float`, *optional*, defaults to 0.0):
99
- The dropout ratio for the attention probabilities.
100
-
101
- ```python
102
- >>> from transformers import MiniCPMModel, MiniCPMConfig
103
-
104
- >>> # Initializing a MiniCPM minicpm-7b style configuration
105
- >>> configuration = MiniCPMConfig()
106
-
107
- >>> # Initializing a model from the minicpm-7b style configuration
108
- >>> model = MiniCPMModel(configuration)
109
-
110
- >>> # Accessing the model configuration
111
- >>> configuration = model.config
112
- ```"""
113
-
114
- model_type = "minicpm"
115
- keys_to_ignore_at_inference = ["past_key_values"]
116
-
117
- def __init__(
118
- self,
119
- vocab_size=32000,
120
- hidden_size=4096,
121
- intermediate_size=11008,
122
- num_hidden_layers=32,
123
- num_attention_heads=32,
124
- num_key_value_heads=None,
125
- hidden_act="silu",
126
- max_position_embeddings=2048,
127
- initializer_range=0.02,
128
- rms_norm_eps=1e-6,
129
- use_cache=True,
130
- pad_token_id=None,
131
- bos_token_id=1,
132
- eos_token_id=2,
133
- pretraining_tp=1,
134
- tie_word_embeddings=True,
135
- rope_theta=10000.0,
136
- rope_scaling=None,
137
- attention_bias=False,
138
- attention_dropout=0.0,
139
- scale_emb=1,
140
- dim_model_base=1,
141
- scale_depth=1,
142
- **kwargs,
143
- ):
144
- self.vocab_size = vocab_size
145
- self.max_position_embeddings = max_position_embeddings
146
- self.hidden_size = hidden_size
147
- self.intermediate_size = intermediate_size
148
- self.num_hidden_layers = num_hidden_layers
149
- self.num_attention_heads = num_attention_heads
150
-
151
- # for backward compatibility
152
- if num_key_value_heads is None:
153
- num_key_value_heads = num_attention_heads
154
-
155
- self.num_key_value_heads = num_key_value_heads
156
- self.hidden_act = hidden_act
157
- self.initializer_range = initializer_range
158
- self.rms_norm_eps = rms_norm_eps
159
- self.pretraining_tp = pretraining_tp
160
- self.use_cache = use_cache
161
- self.rope_theta = rope_theta
162
- self.rope_scaling = rope_scaling
163
- self._rope_scaling_validation()
164
- self.attention_bias = attention_bias
165
- self.attention_dropout = attention_dropout
166
- self.scale_emb = scale_emb
167
- self.dim_model_base = dim_model_base
168
- self.scale_depth = scale_depth
169
-
170
- super().__init__(
171
- pad_token_id=pad_token_id,
172
- bos_token_id=bos_token_id,
173
- eos_token_id=eos_token_id,
174
- tie_word_embeddings=tie_word_embeddings,
175
- **kwargs,
176
- )
177
- try:
178
- import flash_attn
179
- self._attn_implementation = "flash_attention_2"
180
- except:
181
- pass
182
-
183
- def _rope_scaling_validation(self):
184
- """
185
- Validate the `rope_scaling` configuration.
186
- """
187
- if self.rope_scaling is None:
188
- return
189
-
190
- if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
191
- raise ValueError(
192
- "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
193
- f"got {self.rope_scaling}"
194
- )
195
- rope_scaling_type = self.rope_scaling.get("type", None)
196
- rope_scaling_factor = self.rope_scaling.get("factor", None)
197
- if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
198
- raise ValueError(
199
- f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
200
- )
201
- if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
202
- raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")