GrimReaperSam
commited on
Commit
·
31e2eee
1
Parent(s):
f9aabaf
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.13 +/- 0.91
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64ed8ae44002b4fc2e310c7bc973456aab26b837639b33f992befe7a56115ded
|
3 |
+
size 108167
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9fd9322670>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f9fd931a8a0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1676561206084070254,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2ZsYWhvdWQvbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9mbGFob3VkL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAD/nBPm7Ajjw7thw/D/nBPm7Ajjw7thw/D/nBPm7Ajjw7thw/D/nBPm7Ajjw7thw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2SBCv9WMRj+5F3W9gthYvyGiAL/dE02/cMDQv2bToz9AhqQ/lL/gPuL6vz+phg6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAP+cE+bsCOPDu2HD/QJTk8QCHSuZGnMDwP+cE+bsCOPDu2HD/QJTk8QCHSuZGnMDwP+cE+bsCOPDu2HD/QJTk8QCHSuZGnMDwP+cE+bsCOPDu2HD/QJTk8QCHSuZGnMDyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.3788533 0.01742574 0.6121556 ]\n [0.3788533 0.01742574 0.6121556 ]\n [0.3788533 0.01742574 0.6121556 ]\n [0.3788533 0.01742574 0.6121556 ]]",
|
60 |
+
"desired_goal": "[[-0.7583137 0.7755864 -0.05983708]\n [-0.84705365 -0.5024739 -0.80108434]\n [-1.6308727 1.2798889 1.285347 ]\n [ 0.43896163 1.4998438 -0.55674225]]",
|
61 |
+
"observation": "[[ 3.7885329e-01 1.7425742e-02 6.1215562e-01 1.1300519e-02\n -4.0079094e-04 1.0782138e-02]\n [ 3.7885329e-01 1.7425742e-02 6.1215562e-01 1.1300519e-02\n -4.0079094e-04 1.0782138e-02]\n [ 3.7885329e-01 1.7425742e-02 6.1215562e-01 1.1300519e-02\n -4.0079094e-04 1.0782138e-02]\n [ 3.7885329e-01 1.7425742e-02 6.1215562e-01 1.1300519e-02\n -4.0079094e-04 1.0782138e-02]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAe2/1PfV1HTztkpY+JxeFvZnksL3LPzY9iRb0vSpXmj02KYg+hfYWPsGHdr0BlDs8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.11984154 0.00961064 0.2940897 ]\n [-0.06498557 -0.08637352 0.04449443]\n [-0.11918361 0.07536156 0.2659394 ]\n [ 0.14742477 -0.06018806 0.01144886]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/yCSIceWD8CUhpRSlIwBbJRLMowBdJRHQKLY8DcM3Id1fZQoaAZoCWgPQwiF7pI4KyIWwJSGlFKUaBVLMmgWR0Ci2K4JNTLodX2UKGgGaAloD0MIti3KbJDJ6b+UhpRSlGgVSzJoFkdAoths34sVcnV9lChoBmgJaA9DCLr1mh4UVPG/lIaUUpRoFUsyaBZHQKLYLMPBi1B1fZQoaAZoCWgPQwhAM4gP7HgEwJSGlFKUaBVLMmgWR0Ci2enxaxHHdX2UKGgGaAloD0MIZf88DRik5L+UhpRSlGgVSzJoFkdAotmnxQSBb3V9lChoBmgJaA9DCLjM6bKYuAPAlIaUUpRoFUsyaBZHQKLZZqu8sc11fZQoaAZoCWgPQwifAIqRJTP/v5SGlFKUaBVLMmgWR0Ci2SZ/Tb35dX2UKGgGaAloD0MIKXef46NFB8CUhpRSlGgVSzJoFkdAotrhyIYWL3V9lChoBmgJaA9DCKgbKPBOPgXAlIaUUpRoFUsyaBZHQKLan40Mw111fZQoaAZoCWgPQwhY42w6Anj1v5SGlFKUaBVLMmgWR0Ci2l5MlC1JdX2UKGgGaAloD0MItyVywRn8CcCUhpRSlGgVSzJoFkdAotoeFUQ043V9lChoBmgJaA9DCFfqWRDKu/W/lIaUUpRoFUsyaBZHQKLb18PWhAZ1fZQoaAZoCWgPQwjtfhXgu83uv5SGlFKUaBVLMmgWR0Ci25WNFSbZdX2UKGgGaAloD0MIldOeknNi87+UhpRSlGgVSzJoFkdAottUWj4593V9lChoBmgJaA9DCIaQ8/4/Dvq/lIaUUpRoFUsyaBZHQKLbFCv5gw51fZQoaAZoCWgPQwg0go3r37X1v5SGlFKUaBVLMmgWR0Ci3NPcafjCdX2UKGgGaAloD0MI3KFhMepa+r+UhpRSlGgVSzJoFkdAotyRm03OwHV9lChoBmgJaA9DCHpSJjW0Qfm/lIaUUpRoFUsyaBZHQKLcUHMUypJ1fZQoaAZoCWgPQwgSh2wgXeziv5SGlFKUaBVLMmgWR0Ci3BBMzuWsdX2UKGgGaAloD0MIbeS6KeX18b+UhpRSlGgVSzJoFkdAot3PvjOs1nV9lChoBmgJaA9DCCWWlLvPMfy/lIaUUpRoFUsyaBZHQKLdjYwIt191fZQoaAZoCWgPQwg/VBoxs48FwJSGlFKUaBVLMmgWR0Ci3Uxjz7MxdX2UKGgGaAloD0MIL6cExCSc9L+UhpRSlGgVSzJoFkdAot0MTSLIgnV9lChoBmgJaA9DCKG8j6M5MvW/lIaUUpRoFUsyaBZHQKLezEw35vd1fZQoaAZoCWgPQwjKbfse9Zf6v5SGlFKUaBVLMmgWR0Ci3oogV45cdX2UKGgGaAloD0MINSTusfTBDMCUhpRSlGgVSzJoFkdAot5I8W9DhXV9lChoBmgJaA9DCL5Nf/YjRfq/lIaUUpRoFUsyaBZHQKLeCNe+mFd1fZQoaAZoCWgPQwjzABb59SMFwJSGlFKUaBVLMmgWR0Ci38jzI3irdX2UKGgGaAloD0MIc2N6whIPDcCUhpRSlGgVSzJoFkdAot+GvbGm13V9lChoBmgJaA9DCEDDmzV43/m/lIaUUpRoFUsyaBZHQKLfRZQpF1B1fZQoaAZoCWgPQwh0X85sV2jhv5SGlFKUaBVLMmgWR0Ci3wVv/BFedX2UKGgGaAloD0MIbTZWYp6VAMCUhpRSlGgVSzJoFkdAouDn+CK77XV9lChoBmgJaA9DCJijx+9tmgPAlIaUUpRoFUsyaBZHQKLgpoVVPvd1fZQoaAZoCWgPQwh1riglBGv4v5SGlFKUaBVLMmgWR0Ci4GVhTfixdX2UKGgGaAloD0MIZVQZxt2AAMCUhpRSlGgVSzJoFkdAouAlRR/EwXV9lChoBmgJaA9DCHnqkQa3dQ3AlIaUUpRoFUsyaBZHQKLh3Zid8Rd1fZQoaAZoCWgPQwgpJQSr6kUCwJSGlFKUaBVLMmgWR0Ci4ZtelbeNdX2UKGgGaAloD0MI8nnFU49EEsCUhpRSlGgVSzJoFkdAouFaKxcE/3V9lChoBmgJaA9DCOqWHeIfthHAlIaUUpRoFUsyaBZHQKLhGhWYF7l1fZQoaAZoCWgPQwjOUUfH1WgKwJSGlFKUaBVLMmgWR0Ci4tZM10kodX2UKGgGaAloD0MIkE5d+SwvDcCUhpRSlGgVSzJoFkdAouKUF6iTMnV9lChoBmgJaA9DCCY49YHkfQLAlIaUUpRoFUsyaBZHQKLiUvEjxCp1fZQoaAZoCWgPQwiELuHQWxwDwJSGlFKUaBVLMmgWR0Ci4hLiMo+fdX2UKGgGaAloD0MIUP9Z8+Ov+r+UhpRSlGgVSzJoFkdAouPLtTkyUXV9lChoBmgJaA9DCLka2ZWWEQLAlIaUUpRoFUsyaBZHQKLjiXTmW+p1fZQoaAZoCWgPQwjyQGSRJt7zv5SGlFKUaBVLMmgWR0Ci40hX8wYcdX2UKGgGaAloD0MISdbh6Cr9BcCUhpRSlGgVSzJoFkdAouMIRf4REnV9lChoBmgJaA9DCPoOfuIAev+/lIaUUpRoFUsyaBZHQKLkwJgLJCB1fZQoaAZoCWgPQwgZcQFolK4HwJSGlFKUaBVLMmgWR0Ci5H5VOsT4dX2UKGgGaAloD0MIYviImBKJCcCUhpRSlGgVSzJoFkdAouQ9KqXF+HV9lChoBmgJaA9DCPQZUG9GjfW/lIaUUpRoFUsyaBZHQKLj/QeFL391fZQoaAZoCWgPQwjEmPT3UhgBwJSGlFKUaBVLMmgWR0Ci5dZ8jRlZdX2UKGgGaAloD0MIN94dGatN47+UhpRSlGgVSzJoFkdAouWUVDa4+nV9lChoBmgJaA9DCMYX7fFCugzAlIaUUpRoFUsyaBZHQKLlUylenht1fZQoaAZoCWgPQwhF2PD0ShkJwJSGlFKUaBVLMmgWR0Ci5ROxB3RpdX2UKGgGaAloD0MIYvNxbajYA8CUhpRSlGgVSzJoFkdAoubRXuE253V9lChoBmgJaA9DCJnZ5zHKs/a/lIaUUpRoFUsyaBZHQKLmjy925hB1fZQoaAZoCWgPQwi7Q4oBEs3/v5SGlFKUaBVLMmgWR0Ci5k4FzMibdX2UKGgGaAloD0MIK78MxoiEAcCUhpRSlGgVSzJoFkdAouYN7fHgg3V9lChoBmgJaA9DCDs2AvG6vgPAlIaUUpRoFUsyaBZHQKLn7Qtz0Yl1fZQoaAZoCWgPQwiCOuXRjTD1v5SGlFKUaBVLMmgWR0Ci56uUt7KJdX2UKGgGaAloD0MI4Qoo1NNH7r+UhpRSlGgVSzJoFkdAoudqbrkbP3V9lChoBmgJaA9DCPDC1mzlpfq/lIaUUpRoFUsyaBZHQKLnKlenhsJ1fZQoaAZoCWgPQwj0iNFzC10AwJSGlFKUaBVLMmgWR0Ci6On0kGA1dX2UKGgGaAloD0MIcJS8OsfACcCUhpRSlGgVSzJoFkdAouinoJRfnnV9lChoBmgJaA9DCIQu4dBb3ATAlIaUUpRoFUsyaBZHQKLoZoM8YAN1fZQoaAZoCWgPQwgPnZ53Y0H1v5SGlFKUaBVLMmgWR0Ci6CZsCT2WdX2UKGgGaAloD0MINPJ5xVMP+L+UhpRSlGgVSzJoFkdAounhfShJy3V9lChoBmgJaA9DCNlaXyS05fO/lIaUUpRoFUsyaBZHQKLpn07r9l51fZQoaAZoCWgPQwhfuHNhpJcEwJSGlFKUaBVLMmgWR0Ci6V4w7DEWdX2UKGgGaAloD0MIoYFYNnNI+7+UhpRSlGgVSzJoFkdAoukeJvYOD3V9lChoBmgJaA9DCOi7W1miQxLAlIaUUpRoFUsyaBZHQKLq3da+vhZ1fZQoaAZoCWgPQwiZm29E90wAwJSGlFKUaBVLMmgWR0Ci6pusT37DdX2UKGgGaAloD0MILSKKyRvg97+UhpRSlGgVSzJoFkdAoupalHjIaXV9lChoBmgJaA9DCD82yY/41fi/lIaUUpRoFUsyaBZHQKLqGoESuhd1fZQoaAZoCWgPQwgTm49rQ2UCwJSGlFKUaBVLMmgWR0Ci69mIsRQKdX2UKGgGaAloD0MItDnObcLdBMCUhpRSlGgVSzJoFkdAouuXXEqDsnV9lChoBmgJaA9DCAyTqYJRSeG/lIaUUpRoFUsyaBZHQKLrVjJdSl51fZQoaAZoCWgPQwg//z147dL4v5SGlFKUaBVLMmgWR0Ci6xYh+vyLdX2UKGgGaAloD0MItCJqos+XEMCUhpRSlGgVSzJoFkdAouzU/r0J4XV9lChoBmgJaA9DCFz/rs+cFQjAlIaUUpRoFUsyaBZHQKLsks7uDz11fZQoaAZoCWgPQwg42JsYkhP8v5SGlFKUaBVLMmgWR0Ci7FGpMpPRdX2UKGgGaAloD0MIbamDvB7MB8CUhpRSlGgVSzJoFkdAouwRiy6cy3V9lChoBmgJaA9DCKSoM/eQMADAlIaUUpRoFUsyaBZHQKLt77XQMQV1fZQoaAZoCWgPQwg7HF2lu2vpv5SGlFKUaBVLMmgWR0Ci7a5DzAerdX2UKGgGaAloD0MINNb+zvaIAsCUhpRSlGgVSzJoFkdAou1tHUc4pHV9lChoBmgJaA9DCCAqjZjZZ/q/lIaUUpRoFUsyaBZHQKLtLOFg2Ih1fZQoaAZoCWgPQwivITgu44YBwJSGlFKUaBVLMmgWR0Ci7u3Ytg8bdX2UKGgGaAloD0MIlnfVA+YBAMCUhpRSlGgVSzJoFkdAou6rrxAjZHV9lChoBmgJaA9DCM2spYC0/wbAlIaUUpRoFUsyaBZHQKLuapMpPRB1fZQoaAZoCWgPQwjmQA+1bZgHwJSGlFKUaBVLMmgWR0Ci7ipyIYWMdX2UKGgGaAloD0MID9WUZB2O7r+UhpRSlGgVSzJoFkdAou/q7EpAlnV9lChoBmgJaA9DCBr5vOKpR/y/lIaUUpRoFUsyaBZHQKLvqLjPv8Z1fZQoaAZoCWgPQwiJ0XMLXakAwJSGlFKUaBVLMmgWR0Ci72eT/yXldX2UKGgGaAloD0MIur4PBwlRBMCUhpRSlGgVSzJoFkdAou8nbj94vHV9lChoBmgJaA9DCEF/oUeMHvm/lIaUUpRoFUsyaBZHQKLw7f1Hvtt1fZQoaAZoCWgPQwh4l4v4TswDwJSGlFKUaBVLMmgWR0Ci8KvYnOSodX2UKGgGaAloD0MIXOSeru5Y/L+UhpRSlGgVSzJoFkdAovBqqGUOeHV9lChoBmgJaA9DCNtq1hnfV/m/lIaUUpRoFUsyaBZHQKLwKpSaVlh1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb733e665a80322991b424b9145fd6d17bcdd9fe227789a7a52d14ba7f5bc50c
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c94a9e7bcb0c4cc6da006109c7013d4c123031fb2178e22cd011d13c0fa0eaf
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-56-generic-x86_64-with-glibc2.10 # 62-Ubuntu SMP Tue Nov 22 19:54:14 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.0
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9fd9322670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9fd931a8a0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676561206084070254, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2ZsYWhvdWQvbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9mbGFob3VkL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAD/nBPm7Ajjw7thw/D/nBPm7Ajjw7thw/D/nBPm7Ajjw7thw/D/nBPm7Ajjw7thw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2SBCv9WMRj+5F3W9gthYvyGiAL/dE02/cMDQv2bToz9AhqQ/lL/gPuL6vz+phg6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAP+cE+bsCOPDu2HD/QJTk8QCHSuZGnMDwP+cE+bsCOPDu2HD/QJTk8QCHSuZGnMDwP+cE+bsCOPDu2HD/QJTk8QCHSuZGnMDwP+cE+bsCOPDu2HD/QJTk8QCHSuZGnMDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3788533 0.01742574 0.6121556 ]\n [0.3788533 0.01742574 0.6121556 ]\n [0.3788533 0.01742574 0.6121556 ]\n [0.3788533 0.01742574 0.6121556 ]]", "desired_goal": "[[-0.7583137 0.7755864 -0.05983708]\n [-0.84705365 -0.5024739 -0.80108434]\n [-1.6308727 1.2798889 1.285347 ]\n [ 0.43896163 1.4998438 -0.55674225]]", "observation": "[[ 3.7885329e-01 1.7425742e-02 6.1215562e-01 1.1300519e-02\n -4.0079094e-04 1.0782138e-02]\n [ 3.7885329e-01 1.7425742e-02 6.1215562e-01 1.1300519e-02\n -4.0079094e-04 1.0782138e-02]\n [ 3.7885329e-01 1.7425742e-02 6.1215562e-01 1.1300519e-02\n -4.0079094e-04 1.0782138e-02]\n [ 3.7885329e-01 1.7425742e-02 6.1215562e-01 1.1300519e-02\n -4.0079094e-04 1.0782138e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAe2/1PfV1HTztkpY+JxeFvZnksL3LPzY9iRb0vSpXmj02KYg+hfYWPsGHdr0BlDs8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.11984154 0.00961064 0.2940897 ]\n [-0.06498557 -0.08637352 0.04449443]\n [-0.11918361 0.07536156 0.2659394 ]\n [ 0.14742477 -0.06018806 0.01144886]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/yCSIceWD8CUhpRSlIwBbJRLMowBdJRHQKLY8DcM3Id1fZQoaAZoCWgPQwiF7pI4KyIWwJSGlFKUaBVLMmgWR0Ci2K4JNTLodX2UKGgGaAloD0MIti3KbJDJ6b+UhpRSlGgVSzJoFkdAoths34sVcnV9lChoBmgJaA9DCLr1mh4UVPG/lIaUUpRoFUsyaBZHQKLYLMPBi1B1fZQoaAZoCWgPQwhAM4gP7HgEwJSGlFKUaBVLMmgWR0Ci2enxaxHHdX2UKGgGaAloD0MIZf88DRik5L+UhpRSlGgVSzJoFkdAotmnxQSBb3V9lChoBmgJaA9DCLjM6bKYuAPAlIaUUpRoFUsyaBZHQKLZZqu8sc11fZQoaAZoCWgPQwifAIqRJTP/v5SGlFKUaBVLMmgWR0Ci2SZ/Tb35dX2UKGgGaAloD0MIKXef46NFB8CUhpRSlGgVSzJoFkdAotrhyIYWL3V9lChoBmgJaA9DCKgbKPBOPgXAlIaUUpRoFUsyaBZHQKLan40Mw111fZQoaAZoCWgPQwhY42w6Anj1v5SGlFKUaBVLMmgWR0Ci2l5MlC1JdX2UKGgGaAloD0MItyVywRn8CcCUhpRSlGgVSzJoFkdAotoeFUQ043V9lChoBmgJaA9DCFfqWRDKu/W/lIaUUpRoFUsyaBZHQKLb18PWhAZ1fZQoaAZoCWgPQwjtfhXgu83uv5SGlFKUaBVLMmgWR0Ci25WNFSbZdX2UKGgGaAloD0MIldOeknNi87+UhpRSlGgVSzJoFkdAottUWj4593V9lChoBmgJaA9DCIaQ8/4/Dvq/lIaUUpRoFUsyaBZHQKLbFCv5gw51fZQoaAZoCWgPQwg0go3r37X1v5SGlFKUaBVLMmgWR0Ci3NPcafjCdX2UKGgGaAloD0MI3KFhMepa+r+UhpRSlGgVSzJoFkdAotyRm03OwHV9lChoBmgJaA9DCHpSJjW0Qfm/lIaUUpRoFUsyaBZHQKLcUHMUypJ1fZQoaAZoCWgPQwgSh2wgXeziv5SGlFKUaBVLMmgWR0Ci3BBMzuWsdX2UKGgGaAloD0MIbeS6KeX18b+UhpRSlGgVSzJoFkdAot3PvjOs1nV9lChoBmgJaA9DCCWWlLvPMfy/lIaUUpRoFUsyaBZHQKLdjYwIt191fZQoaAZoCWgPQwg/VBoxs48FwJSGlFKUaBVLMmgWR0Ci3Uxjz7MxdX2UKGgGaAloD0MIL6cExCSc9L+UhpRSlGgVSzJoFkdAot0MTSLIgnV9lChoBmgJaA9DCKG8j6M5MvW/lIaUUpRoFUsyaBZHQKLezEw35vd1fZQoaAZoCWgPQwjKbfse9Zf6v5SGlFKUaBVLMmgWR0Ci3oogV45cdX2UKGgGaAloD0MINSTusfTBDMCUhpRSlGgVSzJoFkdAot5I8W9DhXV9lChoBmgJaA9DCL5Nf/YjRfq/lIaUUpRoFUsyaBZHQKLeCNe+mFd1fZQoaAZoCWgPQwjzABb59SMFwJSGlFKUaBVLMmgWR0Ci38jzI3irdX2UKGgGaAloD0MIc2N6whIPDcCUhpRSlGgVSzJoFkdAot+GvbGm13V9lChoBmgJaA9DCEDDmzV43/m/lIaUUpRoFUsyaBZHQKLfRZQpF1B1fZQoaAZoCWgPQwh0X85sV2jhv5SGlFKUaBVLMmgWR0Ci3wVv/BFedX2UKGgGaAloD0MIbTZWYp6VAMCUhpRSlGgVSzJoFkdAouDn+CK77XV9lChoBmgJaA9DCJijx+9tmgPAlIaUUpRoFUsyaBZHQKLgpoVVPvd1fZQoaAZoCWgPQwh1riglBGv4v5SGlFKUaBVLMmgWR0Ci4GVhTfixdX2UKGgGaAloD0MIZVQZxt2AAMCUhpRSlGgVSzJoFkdAouAlRR/EwXV9lChoBmgJaA9DCHnqkQa3dQ3AlIaUUpRoFUsyaBZHQKLh3Zid8Rd1fZQoaAZoCWgPQwgpJQSr6kUCwJSGlFKUaBVLMmgWR0Ci4ZtelbeNdX2UKGgGaAloD0MI8nnFU49EEsCUhpRSlGgVSzJoFkdAouFaKxcE/3V9lChoBmgJaA9DCOqWHeIfthHAlIaUUpRoFUsyaBZHQKLhGhWYF7l1fZQoaAZoCWgPQwjOUUfH1WgKwJSGlFKUaBVLMmgWR0Ci4tZM10kodX2UKGgGaAloD0MIkE5d+SwvDcCUhpRSlGgVSzJoFkdAouKUF6iTMnV9lChoBmgJaA9DCCY49YHkfQLAlIaUUpRoFUsyaBZHQKLiUvEjxCp1fZQoaAZoCWgPQwiELuHQWxwDwJSGlFKUaBVLMmgWR0Ci4hLiMo+fdX2UKGgGaAloD0MIUP9Z8+Ov+r+UhpRSlGgVSzJoFkdAouPLtTkyUXV9lChoBmgJaA9DCLka2ZWWEQLAlIaUUpRoFUsyaBZHQKLjiXTmW+p1fZQoaAZoCWgPQwjyQGSRJt7zv5SGlFKUaBVLMmgWR0Ci40hX8wYcdX2UKGgGaAloD0MISdbh6Cr9BcCUhpRSlGgVSzJoFkdAouMIRf4REnV9lChoBmgJaA9DCPoOfuIAev+/lIaUUpRoFUsyaBZHQKLkwJgLJCB1fZQoaAZoCWgPQwgZcQFolK4HwJSGlFKUaBVLMmgWR0Ci5H5VOsT4dX2UKGgGaAloD0MIYviImBKJCcCUhpRSlGgVSzJoFkdAouQ9KqXF+HV9lChoBmgJaA9DCPQZUG9GjfW/lIaUUpRoFUsyaBZHQKLj/QeFL391fZQoaAZoCWgPQwjEmPT3UhgBwJSGlFKUaBVLMmgWR0Ci5dZ8jRlZdX2UKGgGaAloD0MIN94dGatN47+UhpRSlGgVSzJoFkdAouWUVDa4+nV9lChoBmgJaA9DCMYX7fFCugzAlIaUUpRoFUsyaBZHQKLlUylenht1fZQoaAZoCWgPQwhF2PD0ShkJwJSGlFKUaBVLMmgWR0Ci5ROxB3RpdX2UKGgGaAloD0MIYvNxbajYA8CUhpRSlGgVSzJoFkdAoubRXuE253V9lChoBmgJaA9DCJnZ5zHKs/a/lIaUUpRoFUsyaBZHQKLmjy925hB1fZQoaAZoCWgPQwi7Q4oBEs3/v5SGlFKUaBVLMmgWR0Ci5k4FzMibdX2UKGgGaAloD0MIK78MxoiEAcCUhpRSlGgVSzJoFkdAouYN7fHgg3V9lChoBmgJaA9DCDs2AvG6vgPAlIaUUpRoFUsyaBZHQKLn7Qtz0Yl1fZQoaAZoCWgPQwiCOuXRjTD1v5SGlFKUaBVLMmgWR0Ci56uUt7KJdX2UKGgGaAloD0MI4Qoo1NNH7r+UhpRSlGgVSzJoFkdAoudqbrkbP3V9lChoBmgJaA9DCPDC1mzlpfq/lIaUUpRoFUsyaBZHQKLnKlenhsJ1fZQoaAZoCWgPQwj0iNFzC10AwJSGlFKUaBVLMmgWR0Ci6On0kGA1dX2UKGgGaAloD0MIcJS8OsfACcCUhpRSlGgVSzJoFkdAouinoJRfnnV9lChoBmgJaA9DCIQu4dBb3ATAlIaUUpRoFUsyaBZHQKLoZoM8YAN1fZQoaAZoCWgPQwgPnZ53Y0H1v5SGlFKUaBVLMmgWR0Ci6CZsCT2WdX2UKGgGaAloD0MINPJ5xVMP+L+UhpRSlGgVSzJoFkdAounhfShJy3V9lChoBmgJaA9DCNlaXyS05fO/lIaUUpRoFUsyaBZHQKLpn07r9l51fZQoaAZoCWgPQwhfuHNhpJcEwJSGlFKUaBVLMmgWR0Ci6V4w7DEWdX2UKGgGaAloD0MIoYFYNnNI+7+UhpRSlGgVSzJoFkdAoukeJvYOD3V9lChoBmgJaA9DCOi7W1miQxLAlIaUUpRoFUsyaBZHQKLq3da+vhZ1fZQoaAZoCWgPQwiZm29E90wAwJSGlFKUaBVLMmgWR0Ci6pusT37DdX2UKGgGaAloD0MILSKKyRvg97+UhpRSlGgVSzJoFkdAoupalHjIaXV9lChoBmgJaA9DCD82yY/41fi/lIaUUpRoFUsyaBZHQKLqGoESuhd1fZQoaAZoCWgPQwgTm49rQ2UCwJSGlFKUaBVLMmgWR0Ci69mIsRQKdX2UKGgGaAloD0MItDnObcLdBMCUhpRSlGgVSzJoFkdAouuXXEqDsnV9lChoBmgJaA9DCAyTqYJRSeG/lIaUUpRoFUsyaBZHQKLrVjJdSl51fZQoaAZoCWgPQwg//z147dL4v5SGlFKUaBVLMmgWR0Ci6xYh+vyLdX2UKGgGaAloD0MItCJqos+XEMCUhpRSlGgVSzJoFkdAouzU/r0J4XV9lChoBmgJaA9DCFz/rs+cFQjAlIaUUpRoFUsyaBZHQKLsks7uDz11fZQoaAZoCWgPQwg42JsYkhP8v5SGlFKUaBVLMmgWR0Ci7FGpMpPRdX2UKGgGaAloD0MIbamDvB7MB8CUhpRSlGgVSzJoFkdAouwRiy6cy3V9lChoBmgJaA9DCKSoM/eQMADAlIaUUpRoFUsyaBZHQKLt77XQMQV1fZQoaAZoCWgPQwg7HF2lu2vpv5SGlFKUaBVLMmgWR0Ci7a5DzAerdX2UKGgGaAloD0MINNb+zvaIAsCUhpRSlGgVSzJoFkdAou1tHUc4pHV9lChoBmgJaA9DCCAqjZjZZ/q/lIaUUpRoFUsyaBZHQKLtLOFg2Ih1fZQoaAZoCWgPQwivITgu44YBwJSGlFKUaBVLMmgWR0Ci7u3Ytg8bdX2UKGgGaAloD0MIlnfVA+YBAMCUhpRSlGgVSzJoFkdAou6rrxAjZHV9lChoBmgJaA9DCM2spYC0/wbAlIaUUpRoFUsyaBZHQKLuapMpPRB1fZQoaAZoCWgPQwjmQA+1bZgHwJSGlFKUaBVLMmgWR0Ci7ipyIYWMdX2UKGgGaAloD0MID9WUZB2O7r+UhpRSlGgVSzJoFkdAou/q7EpAlnV9lChoBmgJaA9DCBr5vOKpR/y/lIaUUpRoFUsyaBZHQKLvqLjPv8Z1fZQoaAZoCWgPQwiJ0XMLXakAwJSGlFKUaBVLMmgWR0Ci72eT/yXldX2UKGgGaAloD0MIur4PBwlRBMCUhpRSlGgVSzJoFkdAou8nbj94vHV9lChoBmgJaA9DCEF/oUeMHvm/lIaUUpRoFUsyaBZHQKLw7f1Hvtt1fZQoaAZoCWgPQwh4l4v4TswDwJSGlFKUaBVLMmgWR0Ci8KvYnOSodX2UKGgGaAloD0MIXOSeru5Y/L+UhpRSlGgVSzJoFkdAovBqqGUOeHV9lChoBmgJaA9DCNtq1hnfV/m/lIaUUpRoFUsyaBZHQKLwKpSaVlh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-56-generic-x86_64-with-glibc2.10 # 62-Ubuntu SMP Tue Nov 22 19:54:14 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.22.0", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (627 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.127926721330732, "std_reward": 0.909711564720987, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-16T17:07:29.449134"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83767182421fa7d25998cb847cfd4ed8e41c56e5719a961e046d17da96f8d197
|
3 |
+
size 3056
|