GuiTap commited on
Commit
dd9cd68
·
verified ·
1 Parent(s): cf87594

End of training

Browse files
README.md ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: FacebookAI/xlm-roberta-large
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - lener_br
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ - accuracy
14
+ model-index:
15
+ - name: xlm-roberta-large-finetuned-ner-lenerBr
16
+ results:
17
+ - task:
18
+ name: Token Classification
19
+ type: token-classification
20
+ dataset:
21
+ name: lener_br
22
+ type: lener_br
23
+ config: lener_br
24
+ split: validation
25
+ args: lener_br
26
+ metrics:
27
+ - name: Precision
28
+ type: precision
29
+ value: 0.9166029074215761
30
+ - name: Recall
31
+ type: recall
32
+ value: 0.9289222021194107
33
+ - name: F1
34
+ type: f1
35
+ value: 0.9227214377406933
36
+ - name: Accuracy
37
+ type: accuracy
38
+ value: 0.9853721218641206
39
+ ---
40
+
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # xlm-roberta-large-finetuned-ner-lenerBr
45
+
46
+ This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the lener_br dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: nan
49
+ - Precision: 0.9166
50
+ - Recall: 0.9289
51
+ - F1: 0.9227
52
+ - Accuracy: 0.9854
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 2e-05
72
+ - train_batch_size: 2
73
+ - eval_batch_size: 2
74
+ - seed: 42
75
+ - gradient_accumulation_steps: 8
76
+ - total_train_batch_size: 16
77
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
78
+ - lr_scheduler_type: linear
79
+ - num_epochs: 10
80
+
81
+ ### Training results
82
+
83
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
84
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
85
+ | No log | 0.9995 | 489 | nan | 0.8191 | 0.8167 | 0.8179 | 0.9751 |
86
+ | 0.163 | 1.9990 | 978 | nan | 0.8600 | 0.9080 | 0.8833 | 0.9790 |
87
+ | 0.0427 | 2.9985 | 1467 | nan | 0.8736 | 0.9163 | 0.8944 | 0.9814 |
88
+ | 0.0279 | 4.0 | 1957 | nan | 0.8688 | 0.9191 | 0.8932 | 0.9801 |
89
+ | 0.019 | 4.9995 | 2446 | nan | 0.9123 | 0.9196 | 0.9159 | 0.9840 |
90
+ | 0.0143 | 5.9990 | 2935 | nan | 0.9008 | 0.9346 | 0.9174 | 0.9842 |
91
+ | 0.0112 | 6.9985 | 3424 | nan | 0.9063 | 0.9250 | 0.9156 | 0.9843 |
92
+ | 0.0072 | 8.0 | 3914 | nan | 0.8954 | 0.9315 | 0.9131 | 0.9841 |
93
+ | 0.0065 | 8.9995 | 4403 | nan | 0.9226 | 0.9245 | 0.9236 | 0.9857 |
94
+ | 0.0048 | 9.9949 | 4890 | nan | 0.9166 | 0.9289 | 0.9227 | 0.9854 |
95
+
96
+
97
+ ### Framework versions
98
+
99
+ - Transformers 4.46.2
100
+ - Pytorch 2.5.1+cu121
101
+ - Datasets 3.1.0
102
+ - Tokenizers 0.20.3
runs/Dec03_13-44-27_316eb741e5c2/events.out.tfevents.1733233481.316eb741e5c2.554.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1782c853272db687317a7af311b8eca9896aed413f391895296bee1cf71d10da
3
- size 11933
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3098b0236d60acc3c3d07e9e7ff25385aeef1fa32292455f255d699bc30ad37
3
+ size 12759
runs/Dec03_13-44-27_316eb741e5c2/events.out.tfevents.1733241640.316eb741e5c2.554.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5981fc8dc558f3ad566f579307a1de808ff7461d4b8f6e909a26b5fdc031e737
3
+ size 560