|
|
|
|
|
|
|
import torch.nn as nn |
|
|
|
|
|
class VQDecoderV3(nn.Module): |
|
def __init__(self, args): |
|
super(VQDecoderV3, self).__init__() |
|
n_up = args.vae_layer |
|
channels = [] |
|
for i in range(n_up - 1): |
|
channels.append(args.vae_length) |
|
channels.append(args.vae_length) |
|
channels.append(args.vae_test_dim) |
|
input_size = args.vae_length |
|
n_resblk = 2 |
|
assert len(channels) == n_up + 1 |
|
if input_size == channels[0]: |
|
layers = [] |
|
else: |
|
layers = [nn.Conv1d(input_size, channels[0], kernel_size=3, stride=1, padding=1)] |
|
|
|
for i in range(n_resblk): |
|
layers += [ResBlock(channels[0])] |
|
|
|
for i in range(n_up): |
|
layers += [ |
|
nn.Upsample(scale_factor=2, mode="nearest"), |
|
nn.Conv1d(channels[i], channels[i + 1], kernel_size=3, stride=1, padding=1), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
] |
|
layers += [nn.Conv1d(channels[-1], channels[-1], kernel_size=3, stride=1, padding=1)] |
|
self.main = nn.Sequential(*layers) |
|
|
|
|
|
def forward(self, inputs): |
|
inputs = inputs.permute(0, 2, 1) |
|
outputs = self.main(inputs).permute(0, 2, 1) |
|
return outputs |
|
|
|
|
|
class ResBlock(nn.Module): |
|
def __init__(self, channel): |
|
super(ResBlock, self).__init__() |
|
self.model = nn.Sequential( |
|
nn.Conv1d(channel, channel, kernel_size=3, stride=1, padding=1), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
nn.Conv1d(channel, channel, kernel_size=3, stride=1, padding=1), |
|
) |
|
|
|
def forward(self, x): |
|
residual = x |
|
out = self.model(x) |
|
out += residual |
|
return out |
|
|