medmekk HF staff commited on
Commit
481056b
·
verified ·
1 Parent(s): 9100ea5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -155
README.md CHANGED
@@ -1,199 +1,103 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
 
 
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
 
106
 
107
- ### Testing Data, Factors & Metrics
 
108
 
109
- #### Testing Data
 
 
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
 
 
 
112
 
113
- [More Information Needed]
 
114
 
115
- #### Factors
 
 
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
 
118
 
119
- [More Information Needed]
 
 
120
 
121
- #### Metrics
 
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ base_model:
4
+ - meta-llama/Meta-Llama-3-8B-Instruct
5
  ---
6
 
7
  # Model Card for Model ID
8
 
9
+ ### Llama3-8B-1.58 Models
10
 
11
+ The **Llama3-8B-1.58** models are large language models fine-tuned on the **BitNet 1.58b architecture**, starting from the base model **Llama-3-8B-Instruct**.
12
 
13
+ For a deeper dive into the methods and results, check out our [blog post](https://).
14
 
 
 
 
 
 
 
 
15
 
16
+ ## Model Details
 
 
 
 
 
 
17
 
18
+ ### Model Sources
19
 
20
  <!-- Provide the basic links for the model. -->
21
 
22
+ - **Repository:** [Model](https://huggingface.co/HF1BitLLM/Llama3-8B-1.58-Sigmoid-k100-10B-tokens)
23
+ - **Paper:** [The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits](https://arxiv.org/abs/2402.17764)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
 
25
 
26
+ ## How to Get Started with the Model
 
 
 
 
 
 
27
 
28
+ You can easily load and test our model in Transformers. Just follow the code below:
29
 
30
+ ```python
31
+ model = AutoModelForCausalLM.from_pretrained("HF1BitLLM/Llama3-8B-1.58-Linear-10B-tokens", device_map="cuda", torch_dtype=torch.bfloat16)
32
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
33
 
34
+ input_text = "Daniel went back to the the the garden. Mary travelled to the kitchen. Sandra journeyed to the kitchen. Sandra went to the hallway. John went to the bedroom. Mary went back to the garden. Where is Mary?\nAnswer:"
35
 
36
+ input_ids = tokenizer.encode(input_text, return_tensors="pt").cuda()
37
+ output = model.generate(input_ids, max_length=10, do_sample=False)
38
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
39
+ print(generated_text)
40
+ ```
41
 
42
  ## Training Details
43
 
44
  ### Training Data
45
 
46
+ The model was trained on a subset of [FineWeb-edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)
 
 
 
 
 
 
47
 
48
+ ### Training Process
49
 
50
+ 1. **Starting Point**
51
+ - Initialized from Llama3 8B weights
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
+ 2. **Training Duration**
54
+ - Fine-tuned for 5,000 steps
55
 
56
+ 3. **Dataset**
57
+ - FineWeb-edu dataset
58
 
59
+ 4. **Batch Size**
60
+ - 2 million tokens per step
61
+ - Total tokens: 5,000 steps * 2 million tokens = 10 billion tokens
62
 
63
+ 5. **Lambda Scheduler**
64
+ - Used a linear lambda scheduler for warmup quantization
65
+ - Lambda value: `1 / (1 + exp(-k * (step / 1000 - 0.5)))`
66
+ - This gradually introduced quantization over the first 1,000 steps
67
 
68
+ 6. **Learning Rate**
69
+ - Base learning rate: 1e-4
70
 
71
+ 7. **Performance**
72
+ - Achieved impressive results considering the limited training data
73
+ - Outperformed some models trained on much larger datasets (e.g., BitNet 7B trained on 100B tokens)
74
 
75
+ 8. **Evaluation**
76
+ - Regular evaluations using various metrics
77
+ - Metrics included perplexity, MMLU scores, and other standard benchmarks
78
 
79
+ 9. **Quantization**
80
+ - 1.58-bit (ternary) quantization for weights
81
+ - Activations quantized to 8-bit precision
82
 
83
+ 10. **Key Findings**
84
+ - Warmup quantization (sigmoid or linear lambda scheduler) proved crucial for performance
85
 
 
86
 
87
+ ## Evaluation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
+ The evaluation of the models is done on the nanotron checkpoints using LightEval :
90
 
91
+ ![results](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/1.58llm_extreme_quantization/metrics_comparison_updated.png)
92
 
 
93
 
 
94
 
95
+ ## Citation
96
 
97
+ ```bash
98
+ @misc{,
99
+ title={1.58-Bit LLM: A New Era of Extreme Quantization},
100
+ author={Mohamed Mekkouri and Marc Sun and Leandro von Werra and Thomas Wolf},
101
+ year={2024},
102
+ }
103
+ ```