Change usage section
Browse files
README.md
CHANGED
@@ -23,21 +23,30 @@ This enables to specify:
|
|
23 |
## Usage
|
24 |
|
25 |
The model is instantiated the same way as in the Transformers library.
|
26 |
-
The only difference is that there are a few new training arguments specific to HPUs
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
output_dir
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
```
|
|
|
|
|
|
23 |
## Usage
|
24 |
|
25 |
The model is instantiated the same way as in the Transformers library.
|
26 |
+
The only difference is that there are a few new training arguments specific to HPUs.
|
27 |
+
|
28 |
+
[Here](https://github.com/huggingface/optimum-habana/blob/main/examples/image-classification/run_image_classification.py) is an image classification example script to fine-tune a model. You can run it with Swin with the following command:
|
29 |
+
```bash
|
30 |
+
python run_image_classification.py \
|
31 |
+
--model_name_or_path microsoft/swin-base-patch4-window7-224 \
|
32 |
+
--dataset_name cifar10 \
|
33 |
+
--output_dir /tmp/outputs/ \
|
34 |
+
--remove_unused_columns False \
|
35 |
+
--do_train \
|
36 |
+
--do_eval \
|
37 |
+
--learning_rate 2e-5 \
|
38 |
+
--num_train_epochs 5 \
|
39 |
+
--per_device_train_batch_size 32 \
|
40 |
+
--per_device_eval_batch_size 32 \
|
41 |
+
--evaluation_strategy epoch \
|
42 |
+
--save_strategy epoch \
|
43 |
+
--load_best_model_at_end True \
|
44 |
+
--save_total_limit 3 \
|
45 |
+
--seed 1337 \
|
46 |
+
--use_habana \
|
47 |
+
--use_lazy_mode \
|
48 |
+
--gaudi_config_name Habana/swin \
|
49 |
+
--throughput_warmup_steps 2
|
50 |
```
|
51 |
+
|
52 |
+
Check the [documentation](https://huggingface.co/docs/optimum/habana/index) out for more advanced usage and examples.
|