HachiML commited on
Commit
937f57b
·
verified ·
1 Parent(s): 9f1b71b

End of training

Browse files
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ model-index:
5
+ - name: myBit-Llama2-jp-127M-3
6
+ results: []
7
+ ---
8
+
9
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
+ should probably proofread and complete it, then remove this comment. -->
11
+
12
+ # myBit-Llama2-jp-127M-3
13
+
14
+ This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
15
+ It achieves the following results on the evaluation set:
16
+ - Loss: 3.8396
17
+
18
+ ## Model description
19
+
20
+ More information needed
21
+
22
+ ## Intended uses & limitations
23
+
24
+ More information needed
25
+
26
+ ## Training and evaluation data
27
+
28
+ More information needed
29
+
30
+ ## Training procedure
31
+
32
+ ### Training hyperparameters
33
+
34
+ The following hyperparameters were used during training:
35
+ - learning_rate: 0.00024
36
+ - train_batch_size: 96
37
+ - eval_batch_size: 96
38
+ - seed: 42
39
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
40
+ - lr_scheduler_type: polynomial
41
+ - lr_scheduler_warmup_steps: 5000
42
+ - num_epochs: 1
43
+
44
+ ### Training results
45
+
46
+ | Training Loss | Epoch | Step | Validation Loss |
47
+ |:-------------:|:-----:|:-----:|:---------------:|
48
+ | 6.9048 | 0.05 | 2000 | 4.7602 |
49
+ | 4.4421 | 0.1 | 4000 | 4.2117 |
50
+ | 4.0625 | 0.15 | 6000 | 3.9227 |
51
+ | 3.807 | 0.2 | 8000 | 3.7181 |
52
+ | 3.6547 | 0.25 | 10000 | 3.5929 |
53
+ | 3.5296 | 0.29 | 12000 | 3.4812 |
54
+ | 3.4492 | 0.34 | 14000 | 3.4236 |
55
+ | 3.4065 | 0.39 | 16000 | 3.3923 |
56
+ | 3.3816 | 0.44 | 18000 | 3.3778 |
57
+ | 3.3815 | 0.49 | 20000 | 3.3907 |
58
+ | 3.431 | 0.54 | 22000 | 3.4870 |
59
+ | 3.5507 | 0.59 | 24000 | 3.5969 |
60
+ | 3.6557 | 0.64 | 26000 | 3.6918 |
61
+ | 3.715 | 0.69 | 28000 | 3.7377 |
62
+ | 3.7646 | 0.74 | 30000 | 3.7620 |
63
+ | 3.8005 | 0.79 | 32000 | 3.8221 |
64
+ | 3.8288 | 0.83 | 34000 | 3.8550 |
65
+ | 3.8552 | 0.88 | 36000 | 3.8449 |
66
+ | 3.8591 | 0.93 | 38000 | 3.8483 |
67
+ | 3.8452 | 0.98 | 40000 | 3.8396 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.38.2
73
+ - Pytorch 2.2.1+cu121
74
+ - Datasets 2.18.0
75
+ - Tokenizers 0.15.2
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.38.2"
6
+ }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:33f98e759c9066855e2181121fc9aca54c9ec4f4bff7cb84d2a454aa08b608a2
3
  size 511344824
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dc02a25486dbef4062dacf02ce49d5f447547e728955a207c2b5ff9721b63d3
3
  size 511344824
modeling_bit_llama.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional
2
+ from transformers.models.llama.modeling_llama import (
3
+ LlamaConfig,
4
+ LlamaModel,
5
+ LlamaForCausalLM,
6
+ LlamaAttention,
7
+ LlamaFlashAttention2,
8
+ LlamaSdpaAttention,
9
+ LlamaMLP,
10
+ LlamaDecoderLayer,
11
+ )
12
+ from mybitnet.bitnet import BitLinear
13
+ from torch import nn
14
+
15
+ class BitLlamaConfig(LlamaConfig):
16
+ model_type = "bit_llama"
17
+
18
+ def __init__(self, bits=8, **kwargs):
19
+ super().__init__(**kwargs)
20
+ self.bits = bits
21
+
22
+ class BitLlamaMLP(LlamaMLP):
23
+ def __init__(self, config):
24
+ super().__init__(config)
25
+ self.gate_proj = BitLinear(self.hidden_size, self.intermediate_size, bias=False, bits=config.bits, flg_before_linear=True)
26
+ self.up_proj = BitLinear(self.hidden_size, self.intermediate_size, bias=False, bits=config.bits, flg_before_linear=True)
27
+ self.down_proj = BitLinear(self.intermediate_size, self.hidden_size, bias=False, bits=config.bits, flg_before_linear=False)
28
+
29
+ class BitLlamaAttention(LlamaAttention):
30
+ def __init__(self, config: BitLlamaConfig, layer_idx: Optional[int] = None):
31
+ super().__init__(config)
32
+ self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
33
+ self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
34
+ self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
35
+ self.o_proj = BitLinear(self.hidden_size, self.hidden_size, bias=False, bits=config.bits, flg_before_linear=True)
36
+
37
+ class BitLlamaFlashAttention2(LlamaFlashAttention2):
38
+ def __init__(self, config: BitLlamaConfig, layer_idx: Optional[int] = None):
39
+ super().__init__(config, layer_idx)
40
+ self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
41
+ self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
42
+ self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
43
+ self.o_proj = BitLinear(self.hidden_size, self.hidden_size, bias=False, bits=config.bits, flg_before_linear=True)
44
+
45
+ class BitLlamaSdpaAttention(LlamaSdpaAttention):
46
+ def __init__(self, config: BitLlamaConfig, layer_idx: Optional[int] = None):
47
+ super().__init__(config, layer_idx)
48
+ self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
49
+ self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
50
+ self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
51
+ self.o_proj = BitLinear(self.hidden_size, self.hidden_size, bias=False, bits=config.bits, flg_before_linear=True)
52
+
53
+ BITLLAMA_ATTENTION_CLASSES = {
54
+ "eager": BitLlamaAttention,
55
+ "flash_attention_2": BitLlamaFlashAttention2,
56
+ "sdpa": BitLlamaSdpaAttention,
57
+ }
58
+
59
+ class BitLlamaDecoderLayer(LlamaDecoderLayer):
60
+ def __init__(self, config: BitLlamaConfig, layer_idx: int):
61
+ super().__init__(config, layer_idx)
62
+ self.self_attn = BITLLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
63
+ self.mlp = BitLlamaMLP(config)
64
+
65
+ class BitLlamaModel(LlamaModel):
66
+ def __init__(self, config: BitLlamaConfig):
67
+ super().__init__(config)
68
+ self.layers = nn.ModuleList(
69
+ [BitLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
70
+ )
71
+
72
+ class BitLlamaForCausalLM(LlamaForCausalLM):
73
+ config_class = BitLlamaConfig
74
+
75
+ def __init__(self, config: BitLlamaConfig):
76
+ super().__init__(config)
77
+ self.model = BitLlamaModel(config)
78
+ self.lm_head = BitLinear(config.hidden_size, config.vocab_size, bias=False, bits=config.bits, flg_before_linear=True)
79
+