File size: 2,144 Bytes
e4eaf5d c82afb6 a857599 e4eaf5d a857599 e4eaf5d a857599 e4eaf5d a857599 e4eaf5d a857599 e4eaf5d a857599 e4eaf5d a857599 e4eaf5d a857599 e4eaf5d a857599 e4eaf5d a857599 e4eaf5d a857599 e4eaf5d a857599 e4eaf5d a857599 e4eaf5d a857599 e4eaf5d a857599 e4eaf5d a857599 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
base_model: Haleshot/Mathmate-7B-DELLA-ORPO
tags:
- finetuned
- orpo
- everyday-conversations
- adapter
datasets:
- HuggingFaceTB/everyday-conversations-llama3.1-2k
license: apache-2.0
language:
- en
library_name: transformers
pipeline_tag: text-generation
---
# Mathmate-7B-DELLA-ORPO-C
Mathmate-7B-DELLA-ORPO-C is a LoRA adapter for [Haleshot/Mathmate-7B-DELLA-ORPO](https://huggingface.co/Haleshot/Mathmate-7B-DELLA-ORPO), finetuned to improve performance on everyday conversations.
## Model Details
- **Base Model:** [Haleshot/Mathmate-7B-DELLA](https://huggingface.co/Haleshot/Mathmate-7B-DELLA-ORPO)
- **Training Dataset:** [HuggingFaceTB/everyday-conversations-llama3.1-2k](https://huggingface.co/datasets/HuggingFaceTB/everyday-conversations-llama3.1-2k)
## Dataset
The model was finetuned on the [HuggingFaceTB/everyday-conversations-llama3.1-2k](https://huggingface.co/datasets/HuggingFaceTB/everyday-conversations-llama3.1-2k) dataset, which focuses on everyday conversations and small talk.
## Usage
To use this LoRA adapter, you need to load both the base model and the adapter. Here's an example:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel, PeftConfig
import torch
base_model_name = "Haleshot/Mathmate-7B-DELLA"
adapter_name = "Haleshot/Mathmate-7B-DELLA-ORPO-C"
base_model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
model = PeftModel.from_pretrained(base_model, adapter_name)
def generate_response(prompt, max_length=512):
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=max_length, num_return_sequences=1, do_sample=True, temperature=0.7)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
prompt = "Let's have a casual conversation about the weather today."
response = generate_response(prompt)
print(response)
```
## Acknowledgements
Thanks to the HuggingFaceTB team for providing the everyday conversations dataset used in this finetuning process. |