Hamze-Hammami
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -25,13 +25,90 @@ model-index:
|
|
25 |
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
-
## Usage
|
29 |
-
|
30 |
|
31 |
|
32 |
```python
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
...
|
37 |
```
|
|
|
25 |
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
+
## Usage
|
29 |
+
code was done with gym env and stable-basline3 libraray
|
30 |
|
31 |
|
32 |
```python
|
33 |
+
!apt install swig cmake
|
34 |
+
!pip install -r https://raw.githubusercontent.com/huggingface/deep-rl-class/main/notebooks/unit1/requirements-unit1.txt
|
35 |
+
!sudo apt-get update
|
36 |
+
!apt install python3-opengl
|
37 |
+
!apt install ffmpeg
|
38 |
+
!apt install xvfb
|
39 |
+
!pip3 install pyvirtualdisplay
|
40 |
+
# restart colab
|
41 |
+
import os
|
42 |
+
os.kill(os.getpid(), 9)
|
43 |
+
#display
|
44 |
+
from pyvirtualdisplay import Display
|
45 |
|
46 |
+
virtual_display = Display(visible=0, size=(1400, 900))
|
47 |
+
virtual_display.start()
|
48 |
+
# import libraries
|
49 |
+
import gymnasium
|
50 |
+
|
51 |
+
from huggingface_sb3 import load_from_hub, package_to_hub
|
52 |
+
from huggingface_hub import (
|
53 |
+
notebook_login,
|
54 |
+
)
|
55 |
+
|
56 |
+
from stable_baselines3 import PPO
|
57 |
+
from stable_baselines3.common.env_util import make_vec_env
|
58 |
+
from stable_baselines3.common.evaluation import evaluate_policy
|
59 |
+
from stable_baselines3.common.monitor import Monitor
|
60 |
+
|
61 |
+
# Create environment
|
62 |
+
env = gym.make('LunarLander-v2')
|
63 |
+
|
64 |
+
|
65 |
+
model = PPO(
|
66 |
+
policy="MlpPolicy",
|
67 |
+
env=env,
|
68 |
+
n_steps=1024,
|
69 |
+
batch_size=64,
|
70 |
+
n_epochs=4,
|
71 |
+
gamma=0.999,
|
72 |
+
gae_lambda=0.98,
|
73 |
+
ent_coef=0.01,
|
74 |
+
verbose=1,
|
75 |
+
)
|
76 |
+
# Train the agent
|
77 |
+
model.learn(total_timesteps=1000000)
|
78 |
+
|
79 |
+
# Save the model
|
80 |
+
model_name = "ppo-LunarLander-v2"
|
81 |
+
model.save(model_name)
|
82 |
+
|
83 |
+
#evaluate model
|
84 |
+
eval_env = Monitor(gym.make("LunarLander-v2"))
|
85 |
+
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
|
86 |
+
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
|
87 |
+
|
88 |
+
# create a video (for colab)
|
89 |
+
import gym
|
90 |
+
from stable_baselines3 import PPO
|
91 |
+
from IPython.display import Video, display
|
92 |
+
import os
|
93 |
+
|
94 |
+
env = gym.make('LunarLander-v2')
|
95 |
+
|
96 |
+
model_name = "ppo-LunarLander-v2"
|
97 |
+
model = PPO.load(model_name)
|
98 |
+
|
99 |
+
def record_video(env, model, video_length=500, prefix="ppo-lunarlander"):
|
100 |
+
env = gym.wrappers.RecordVideo(env, video_folder=prefix, episode_trigger=lambda x: x == 0)
|
101 |
+
obs = env.reset()
|
102 |
+
for _ in range(video_length):
|
103 |
+
action, _ = model.predict(obs)
|
104 |
+
obs, _, done, _ = env.step(action)
|
105 |
+
if done:
|
106 |
+
obs = env.reset()
|
107 |
+
env.close()
|
108 |
+
|
109 |
+
record_video(env, model, video_length=500, prefix="ppo-lunarlander")
|
110 |
+
|
111 |
+
video_path = "ppo-lunarlander/rl-video-episode-0.mp4"
|
112 |
+
display(Video(video_path))
|
113 |
...
|
114 |
```
|