HayatoF-1015 commited on
Commit
43bd9cd
·
verified ·
1 Parent(s): 221b107

Update README

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md CHANGED
@@ -20,3 +20,79 @@ language:
20
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
23
+
24
+ # Sample Use
25
+
26
+ 以下は、elyza-tasks-100-TV_0.jsonlの回答のためのコードです。
27
+
28
+ ```python
29
+ from transformers import (
30
+ AutoModelForCausalLM,
31
+ AutoTokenizer,
32
+ BitsAndBytesConfig,
33
+ )
34
+ import torch
35
+ from tqdm import tqdm
36
+ import json
37
+
38
+ HF_TOKEN = "your-token"
39
+ model_name = "HayatoF-1015/llm-jp-3-13b-finetune-2024-11-22"
40
+
41
+ # QLoRA config
42
+ bnb_config = BitsAndBytesConfig(
43
+ load_in_4bit=True,
44
+ bnb_4bit_quant_type="nf4",
45
+ bnb_4bit_compute_dtype=torch.bfloat16,
46
+ bnb_4bit_use_double_quant=False,
47
+ )
48
+
49
+ # Load model
50
+ model = AutoModelForCausalLM.from_pretrained(
51
+ model_name,
52
+ quantization_config=bnb_config,
53
+ device_map="auto",
54
+ token = HF_TOKEN
55
+ )
56
+
57
+ # Load tokenizer
58
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token = HF_TOKEN)
59
+
60
+ # データセットの読み込み。
61
+ datasets = []
62
+ with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
63
+ item = ""
64
+ for line in f:
65
+ line = line.strip()
66
+ item += line
67
+ if item.endswith("}"):
68
+ datasets.append(json.loads(item))
69
+ item = ""
70
+ results = []
71
+ for data in tqdm(datasets):
72
+
73
+ input = data["input"]
74
+
75
+ prompt = f"""### 指示
76
+ {input}
77
+ ### 回答:
78
+ """
79
+
80
+ tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
81
+ with torch.no_grad():
82
+ outputs = model.generate(
83
+ tokenized_input,
84
+ max_new_tokens=300,
85
+ do_sample=False,
86
+ repetition_penalty=1.2
87
+ )[0]
88
+ output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
89
+
90
+ results.append({"task_id": data["task_id"], "input": input, "output": output})
91
+
92
+ import re
93
+ model_name = re.sub(".*/", "", model_name)
94
+ with open(f"./{model_name}-my-original-outputs.jsonl", 'w', encoding='utf-8') as f:
95
+ for result in results:
96
+ json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
97
+ f.write('\n')
98
+ ```