tiedeman commited on
Commit
1390d51
·
1 Parent(s): 6df1854

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.spm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ language:
4
+ - am
5
+ - ar
6
+ - arc
7
+ - de
8
+ - en
9
+ - hbo
10
+ - he
11
+ - jpa
12
+ - mt
13
+ - nl
14
+ - oar
15
+ - phn
16
+ - sgw
17
+ - syc
18
+ - syr
19
+ - ti
20
+ - tig
21
+ - tmr
22
+
23
+ tags:
24
+ - translation
25
+ - opus-mt-tc-bible
26
+
27
+ license: apache-2.0
28
+ model-index:
29
+ - name: opus-mt-tc-bible-big-sem-deu_eng_nld
30
+ results:
31
+ - task:
32
+ name: Translation multi-multi
33
+ type: translation
34
+ args: multi-multi
35
+ dataset:
36
+ name: tatoeba-test-v2020-07-28-v2023-09-26
37
+ type: tatoeba_mt
38
+ args: multi-multi
39
+ metrics:
40
+ - name: BLEU
41
+ type: bleu
42
+ value: 47.0
43
+ - name: chr-F
44
+ type: chrf
45
+ value: 0.63867
46
+ ---
47
+ # opus-mt-tc-bible-big-sem-deu_eng_nld
48
+
49
+ ## Table of Contents
50
+ - [Model Details](#model-details)
51
+ - [Uses](#uses)
52
+ - [Risks, Limitations and Biases](#risks-limitations-and-biases)
53
+ - [How to Get Started With the Model](#how-to-get-started-with-the-model)
54
+ - [Training](#training)
55
+ - [Evaluation](#evaluation)
56
+ - [Citation Information](#citation-information)
57
+ - [Acknowledgements](#acknowledgements)
58
+
59
+ ## Model Details
60
+
61
+ Neural machine translation model for translating from Semitic languages (sem) to unknown (deu+eng+nld).
62
+
63
+ This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
64
+ **Model Description:**
65
+ - **Developed by:** Language Technology Research Group at the University of Helsinki
66
+ - **Model Type:** Translation (transformer-big)
67
+ - **Release**: 2024-08-18
68
+ - **License:** Apache-2.0
69
+ - **Language(s):**
70
+ - Source Language(s): acm afb amh apc ara arc arq arz hbo heb jpa mlt oar phn sgw syc syr tig tir tmr
71
+ - Target Language(s): deu eng nld
72
+ - Valid Target Language Labels: >>deu<< >>eng<< >>nld<< >>xxx<<
73
+ - **Original Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/sem-deu+eng+nld/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.zip)
74
+ - **Resources for more information:**
75
+ - [OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/sem-deu%2Beng%2Bnld/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-08-18)
76
+ - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
77
+ - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian)
78
+ - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/)
79
+ - [HPLT bilingual data v1 (as part of the Tatoeba Translation Challenge dataset)](https://hplt-project.org/datasets/v1)
80
+ - [A massively parallel Bible corpus](https://aclanthology.org/L14-1215/)
81
+
82
+ This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>deu<<`
83
+
84
+ ## Uses
85
+
86
+ This model can be used for translation and text-to-text generation.
87
+
88
+ ## Risks, Limitations and Biases
89
+
90
+ **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.**
91
+
92
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
93
+
94
+ ## How to Get Started With the Model
95
+
96
+ A short example code:
97
+
98
+ ```python
99
+ from transformers import MarianMTModel, MarianTokenizer
100
+
101
+ src_text = [
102
+ ">>eng<< شاهد ليون التلفاز لوقت أطول.",
103
+ ">>nld<< הם מתקוטטים לעיתים קרובות."
104
+ ]
105
+
106
+ model_name = "pytorch-models/opus-mt-tc-bible-big-sem-deu_eng_nld"
107
+ tokenizer = MarianTokenizer.from_pretrained(model_name)
108
+ model = MarianMTModel.from_pretrained(model_name)
109
+ translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
110
+
111
+ for t in translated:
112
+ print( tokenizer.decode(t, skip_special_tokens=True) )
113
+
114
+ # expected output:
115
+ # I watched TV for a long time.
116
+ # Ze vechten vaak.
117
+ ```
118
+
119
+ You can also use OPUS-MT models with the transformers pipelines, for example:
120
+
121
+ ```python
122
+ from transformers import pipeline
123
+ pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-bible-big-sem-deu_eng_nld")
124
+ print(pipe(">>eng<< شاهد ليون التلفاز لوقت أطول."))
125
+
126
+ # expected output: I watched TV for a long time.
127
+ ```
128
+
129
+ ## Training
130
+
131
+ - **Data**: opusTCv20230926max50+bt+jhubc ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
132
+ - **Pre-processing**: SentencePiece (spm32k,spm32k)
133
+ - **Model Type:** transformer-big
134
+ - **Original MarianNMT Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/sem-deu+eng+nld/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.zip)
135
+ - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
136
+
137
+ ## Evaluation
138
+
139
+ * [Model scores at the OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/sem-deu%2Beng%2Bnld/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-08-18)
140
+ * test set translations: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/sem-deu+eng+nld/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.test.txt)
141
+ * test set scores: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/sem-deu+eng+nld/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.eval.txt)
142
+ * benchmark results: [benchmark_results.txt](benchmark_results.txt)
143
+ * benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
144
+
145
+ | langpair | testset | chr-F | BLEU | #sent | #words |
146
+ |----------|---------|-------|-------|-------|--------|
147
+ | multi-multi | tatoeba-test-v2020-07-28-v2023-09-26 | 0.63867 | 47.0 | 10000 | 73537 |
148
+
149
+ ## Citation Information
150
+
151
+ * Publications: [Democratizing neural machine translation with OPUS-MT](https://doi.org/10.1007/s10579-023-09704-w) and [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
152
+
153
+ ```bibtex
154
+ @article{tiedemann2023democratizing,
155
+ title={Democratizing neural machine translation with {OPUS-MT}},
156
+ author={Tiedemann, J{\"o}rg and Aulamo, Mikko and Bakshandaeva, Daria and Boggia, Michele and Gr{\"o}nroos, Stig-Arne and Nieminen, Tommi and Raganato, Alessandro and Scherrer, Yves and Vazquez, Raul and Virpioja, Sami},
157
+ journal={Language Resources and Evaluation},
158
+ number={58},
159
+ pages={713--755},
160
+ year={2023},
161
+ publisher={Springer Nature},
162
+ issn={1574-0218},
163
+ doi={10.1007/s10579-023-09704-w}
164
+ }
165
+
166
+ @inproceedings{tiedemann-thottingal-2020-opus,
167
+ title = "{OPUS}-{MT} {--} Building open translation services for the World",
168
+ author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
169
+ booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
170
+ month = nov,
171
+ year = "2020",
172
+ address = "Lisboa, Portugal",
173
+ publisher = "European Association for Machine Translation",
174
+ url = "https://aclanthology.org/2020.eamt-1.61",
175
+ pages = "479--480",
176
+ }
177
+
178
+ @inproceedings{tiedemann-2020-tatoeba,
179
+ title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
180
+ author = {Tiedemann, J{\"o}rg},
181
+ booktitle = "Proceedings of the Fifth Conference on Machine Translation",
182
+ month = nov,
183
+ year = "2020",
184
+ address = "Online",
185
+ publisher = "Association for Computational Linguistics",
186
+ url = "https://aclanthology.org/2020.wmt-1.139",
187
+ pages = "1174--1182",
188
+ }
189
+ ```
190
+
191
+ ## Acknowledgements
192
+
193
+ The work is supported by the [HPLT project](https://hplt-project.org/), funded by the European Union’s Horizon Europe research and innovation programme under grant agreement No 101070350. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland, and the [EuroHPC supercomputer LUMI](https://www.lumi-supercomputer.eu/).
194
+
195
+ ## Model conversion info
196
+
197
+ * transformers version: 4.45.1
198
+ * OPUS-MT git hash: 0882077
199
+ * port time: Tue Oct 8 16:35:18 EEST 2024
200
+ * port machine: LM0-400-22516.local
benchmark_results.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ multi-multi tatoeba-test-v2020-07-28-v2023-09-26 0.63867 47.0 10000 73537
benchmark_translations.zip ADDED
File without changes
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "pytorch-models/opus-mt-tc-bible-big-sem-deu_eng_nld",
3
+ "activation_dropout": 0.0,
4
+ "activation_function": "relu",
5
+ "architectures": [
6
+ "MarianMTModel"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "bos_token_id": 0,
10
+ "classifier_dropout": 0.0,
11
+ "d_model": 1024,
12
+ "decoder_attention_heads": 16,
13
+ "decoder_ffn_dim": 4096,
14
+ "decoder_layerdrop": 0.0,
15
+ "decoder_layers": 6,
16
+ "decoder_start_token_id": 61308,
17
+ "decoder_vocab_size": 61309,
18
+ "dropout": 0.1,
19
+ "encoder_attention_heads": 16,
20
+ "encoder_ffn_dim": 4096,
21
+ "encoder_layerdrop": 0.0,
22
+ "encoder_layers": 6,
23
+ "eos_token_id": 561,
24
+ "forced_eos_token_id": null,
25
+ "init_std": 0.02,
26
+ "is_encoder_decoder": true,
27
+ "max_length": null,
28
+ "max_position_embeddings": 1024,
29
+ "model_type": "marian",
30
+ "normalize_embedding": false,
31
+ "num_beams": null,
32
+ "num_hidden_layers": 6,
33
+ "pad_token_id": 61308,
34
+ "scale_embedding": true,
35
+ "share_encoder_decoder_embeddings": true,
36
+ "static_position_embeddings": true,
37
+ "torch_dtype": "float32",
38
+ "transformers_version": "4.45.1",
39
+ "use_cache": true,
40
+ "vocab_size": 61309
41
+ }
generation_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bad_words_ids": [
4
+ [
5
+ 61308
6
+ ]
7
+ ],
8
+ "bos_token_id": 0,
9
+ "decoder_start_token_id": 61308,
10
+ "eos_token_id": 561,
11
+ "forced_eos_token_id": 561,
12
+ "max_length": 512,
13
+ "num_beams": 4,
14
+ "pad_token_id": 61308,
15
+ "transformers_version": "4.45.1"
16
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:448867303443d5729a2d048e561c942b40062cd8de756a07476b2a570accec68
3
+ size 956826020
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ad704dd129ea067580c74950df3f17bf53e9082909a1ff14993413358a0ffd2
3
+ size 956877253
source.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b253ddfd24e7be4d3f34328a0c6b36cab3658c58342da57ec026407d318e4bd5
3
+ size 849715
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
target.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41c3991a5fe4cd256599a8eda754e628f15761949d85569f6d99b237e5b0c2c9
3
+ size 806054
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"source_lang": "sem", "target_lang": "deu+eng+nld", "unk_token": "<unk>", "eos_token": "</s>", "pad_token": "<pad>", "model_max_length": 512, "sp_model_kwargs": {}, "separate_vocabs": false, "special_tokens_map_file": null, "name_or_path": "marian-models/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18/sem-deu+eng+nld", "tokenizer_class": "MarianTokenizer"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff