|
from original import *
|
|
import shutil, glob
|
|
from easyfuncs import download_from_url, CachedModels
|
|
os.makedirs("dataset",exist_ok=True)
|
|
model_library = CachedModels()
|
|
|
|
with gr.Blocks(title="🔊",theme=gr.themes.Base(primary_hue="rose",neutral_hue="zinc")) as app:
|
|
with gr.Row():
|
|
gr.HTML("<img src='file/a.png' alt='image'>")
|
|
with gr.Tabs():
|
|
with gr.TabItem("Inference"):
|
|
with gr.Row():
|
|
voice_model = gr.Dropdown(label="Model Voice", choices=sorted(names), value=lambda:sorted(names)[0] if len(sorted(names)) > 0 else '', interactive=True)
|
|
refresh_button = gr.Button("Refresh", variant="primary")
|
|
spk_item = gr.Slider(
|
|
minimum=0,
|
|
maximum=2333,
|
|
step=1,
|
|
label="Speaker ID",
|
|
value=0,
|
|
visible=False,
|
|
interactive=True,
|
|
)
|
|
vc_transform0 = gr.Number(
|
|
label="Pitch",
|
|
value=0
|
|
)
|
|
but0 = gr.Button(value="Convert", variant="primary")
|
|
with gr.Row():
|
|
with gr.Column():
|
|
with gr.Row():
|
|
dropbox = gr.File(label="Drop your audio here & hit the Reload button.")
|
|
with gr.Row():
|
|
record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath")
|
|
with gr.Row():
|
|
paths_for_files = lambda path:[os.path.abspath(os.path.join(path, f)) for f in os.listdir(path) if os.path.splitext(f)[1].lower() in ('.mp3', '.wav', '.flac', '.ogg')]
|
|
input_audio0 = gr.Dropdown(
|
|
label="Input Path",
|
|
value=paths_for_files('audios')[0] if len(paths_for_files('audios')) > 0 else '',
|
|
choices=paths_for_files('audios'),
|
|
allow_custom_value=True
|
|
)
|
|
with gr.Row():
|
|
audio_player = gr.Audio()
|
|
input_audio0.change(
|
|
inputs=[input_audio0],
|
|
outputs=[audio_player],
|
|
fn=lambda path: {"value":path,"__type__":"update"} if os.path.exists(path) else None
|
|
)
|
|
record_button.stop_recording(
|
|
fn=lambda audio:audio,
|
|
inputs=[record_button],
|
|
outputs=[input_audio0])
|
|
dropbox.upload(
|
|
fn=lambda audio:audio.name,
|
|
inputs=[dropbox],
|
|
outputs=[input_audio0])
|
|
with gr.Column():
|
|
with gr.Accordion("Change Index", open=False):
|
|
file_index2 = gr.Dropdown(
|
|
label="Change Index",
|
|
choices=sorted(index_paths),
|
|
interactive=True,
|
|
value=sorted(index_paths)[0] if len(sorted(index_paths)) > 0 else ''
|
|
)
|
|
index_rate1 = gr.Slider(
|
|
minimum=0,
|
|
maximum=1,
|
|
label="Index Strength",
|
|
value=0.5,
|
|
interactive=True,
|
|
)
|
|
vc_output2 = gr.Audio(label="Output")
|
|
with gr.Accordion("General Settings", open=False):
|
|
f0method0 = gr.Radio(
|
|
label="Method",
|
|
choices=["pm", "harvest", "crepe", "rmvpe"]
|
|
if config.dml == False
|
|
else ["pm", "harvest", "rmvpe"],
|
|
value="rmvpe",
|
|
interactive=True,
|
|
)
|
|
filter_radius0 = gr.Slider(
|
|
minimum=0,
|
|
maximum=7,
|
|
label="Breathiness Reduction (Harvest only)",
|
|
value=3,
|
|
step=1,
|
|
interactive=True,
|
|
)
|
|
resample_sr0 = gr.Slider(
|
|
minimum=0,
|
|
maximum=48000,
|
|
label="Resample",
|
|
value=0,
|
|
step=1,
|
|
interactive=True,
|
|
visible=False
|
|
)
|
|
rms_mix_rate0 = gr.Slider(
|
|
minimum=0,
|
|
maximum=1,
|
|
label="Volume Normalization",
|
|
value=0,
|
|
interactive=True,
|
|
)
|
|
protect0 = gr.Slider(
|
|
minimum=0,
|
|
maximum=0.5,
|
|
label="Breathiness Protection (0 is enabled, 0.5 is disabled)",
|
|
value=0.33,
|
|
step=0.01,
|
|
interactive=True,
|
|
)
|
|
if voice_model != None: vc.get_vc(voice_model.value,protect0,protect0)
|
|
file_index1 = gr.Textbox(
|
|
label="Index Path",
|
|
interactive=True,
|
|
visible=False
|
|
)
|
|
refresh_button.click(
|
|
fn=change_choices,
|
|
inputs=[],
|
|
outputs=[voice_model, file_index2],
|
|
api_name="infer_refresh",
|
|
)
|
|
refresh_button.click(
|
|
fn=lambda:{"choices":paths_for_files('audios'),"__type__":"update"},
|
|
inputs=[],
|
|
outputs = [input_audio0],
|
|
)
|
|
refresh_button.click(
|
|
fn=lambda:{"value":paths_for_files('audios')[0],"__type__":"update"} if len(paths_for_files('audios')) > 0 else {"value":"","__type__":"update"},
|
|
inputs=[],
|
|
outputs = [input_audio0],
|
|
)
|
|
with gr.Row():
|
|
f0_file = gr.File(label="F0 Path", visible=False)
|
|
with gr.Row():
|
|
vc_output1 = gr.Textbox(label="Information", placeholder="Welcome!",visible=False)
|
|
but0.click(
|
|
vc.vc_single,
|
|
[
|
|
spk_item,
|
|
input_audio0,
|
|
vc_transform0,
|
|
f0_file,
|
|
f0method0,
|
|
file_index1,
|
|
file_index2,
|
|
index_rate1,
|
|
filter_radius0,
|
|
resample_sr0,
|
|
rms_mix_rate0,
|
|
protect0,
|
|
],
|
|
[vc_output1, vc_output2],
|
|
api_name="infer_convert",
|
|
)
|
|
voice_model.change(
|
|
fn=vc.get_vc,
|
|
inputs=[voice_model, protect0, protect0],
|
|
outputs=[spk_item, protect0, protect0, file_index2, file_index2],
|
|
api_name="infer_change_voice",
|
|
)
|
|
with gr.TabItem("Download Models"):
|
|
with gr.Row():
|
|
url_input = gr.Textbox(label="URL to model", value="",placeholder="https://...", scale=6)
|
|
name_output = gr.Textbox(label="Save as", value="",placeholder="MyModel",scale=2)
|
|
url_download = gr.Button(value="Download Model",scale=2)
|
|
url_download.click(
|
|
inputs=[url_input,name_output],
|
|
outputs=[url_input],
|
|
fn=download_from_url,
|
|
)
|
|
with gr.Row():
|
|
model_browser = gr.Dropdown(choices=list(model_library.models.keys()),label="OR Search Models (Quality UNKNOWN)",scale=5)
|
|
download_from_browser = gr.Button(value="Get",scale=2)
|
|
download_from_browser.click(
|
|
inputs=[model_browser],
|
|
outputs=[model_browser],
|
|
fn=lambda model: download_from_url(model_library.models[model],model),
|
|
)
|
|
with gr.TabItem("Train"):
|
|
with gr.Row():
|
|
with gr.Column():
|
|
training_name = gr.Textbox(label="Name your model", value="My-Voice",placeholder="My-Voice")
|
|
np7 = gr.Slider(
|
|
minimum=0,
|
|
maximum=config.n_cpu,
|
|
step=1,
|
|
label="Number of CPU processes used to extract pitch features",
|
|
value=int(np.ceil(config.n_cpu / 1.5)),
|
|
interactive=True,
|
|
)
|
|
sr2 = gr.Radio(
|
|
label="Sampling Rate",
|
|
choices=["40k", "32k"],
|
|
value="32k",
|
|
interactive=True,
|
|
visible=False
|
|
)
|
|
if_f0_3 = gr.Radio(
|
|
label="Will your model be used for singing? If not, you can ignore this.",
|
|
choices=[True, False],
|
|
value=True,
|
|
interactive=True,
|
|
visible=False
|
|
)
|
|
version19 = gr.Radio(
|
|
label="Version",
|
|
choices=["v1", "v2"],
|
|
value="v2",
|
|
interactive=True,
|
|
visible=False,
|
|
)
|
|
dataset_folder = gr.Textbox(
|
|
label="dataset folder", value='dataset'
|
|
)
|
|
easy_uploader = gr.Files(label="Drop your audio files here",file_types=['audio'])
|
|
but1 = gr.Button("1. Process", variant="primary")
|
|
info1 = gr.Textbox(label="Information", value="",visible=True)
|
|
easy_uploader.upload(inputs=[dataset_folder],outputs=[],fn=lambda folder:os.makedirs(folder,exist_ok=True))
|
|
easy_uploader.upload(
|
|
fn=lambda files,folder: [shutil.copy2(f.name,os.path.join(folder,os.path.split(f.name)[1])) for f in files] if folder != "" else gr.Warning('Please enter a folder name for your dataset'),
|
|
inputs=[easy_uploader, dataset_folder],
|
|
outputs=[])
|
|
gpus6 = gr.Textbox(
|
|
label="Enter the GPU numbers to use separated by -, (e.g. 0-1-2)",
|
|
value=gpus,
|
|
interactive=True,
|
|
visible=F0GPUVisible,
|
|
)
|
|
gpu_info9 = gr.Textbox(
|
|
label="GPU Info", value=gpu_info, visible=F0GPUVisible
|
|
)
|
|
spk_id5 = gr.Slider(
|
|
minimum=0,
|
|
maximum=4,
|
|
step=1,
|
|
label="Speaker ID",
|
|
value=0,
|
|
interactive=True,
|
|
visible=False
|
|
)
|
|
but1.click(
|
|
preprocess_dataset,
|
|
[dataset_folder, training_name, sr2, np7],
|
|
[info1],
|
|
api_name="train_preprocess",
|
|
)
|
|
with gr.Column():
|
|
f0method8 = gr.Radio(
|
|
label="F0 extraction method",
|
|
choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
|
|
value="rmvpe_gpu",
|
|
interactive=True,
|
|
)
|
|
gpus_rmvpe = gr.Textbox(
|
|
label="GPU numbers to use separated by -, (e.g. 0-1-2)",
|
|
value="%s-%s" % (gpus, gpus),
|
|
interactive=True,
|
|
visible=F0GPUVisible,
|
|
)
|
|
but2 = gr.Button("2. Extract Features", variant="primary")
|
|
info2 = gr.Textbox(label="Information", value="", max_lines=8)
|
|
f0method8.change(
|
|
fn=change_f0_method,
|
|
inputs=[f0method8],
|
|
outputs=[gpus_rmvpe],
|
|
)
|
|
but2.click(
|
|
extract_f0_feature,
|
|
[
|
|
gpus6,
|
|
np7,
|
|
f0method8,
|
|
if_f0_3,
|
|
training_name,
|
|
version19,
|
|
gpus_rmvpe,
|
|
],
|
|
[info2],
|
|
api_name="train_extract_f0_feature",
|
|
)
|
|
with gr.Column():
|
|
total_epoch11 = gr.Slider(
|
|
minimum=2,
|
|
maximum=1000,
|
|
step=1,
|
|
label="Epochs (more epochs may improve quality but takes longer)",
|
|
value=150,
|
|
interactive=True,
|
|
)
|
|
but4 = gr.Button("3. Train Index", variant="primary")
|
|
but3 = gr.Button("4. Train Model", variant="primary")
|
|
info3 = gr.Textbox(label="Information", value="", max_lines=10)
|
|
with gr.Accordion(label="General Settings", open=False):
|
|
gpus16 = gr.Textbox(
|
|
label="GPUs separated by -, (e.g. 0-1-2)",
|
|
value="0",
|
|
interactive=True,
|
|
visible=True
|
|
)
|
|
save_epoch10 = gr.Slider(
|
|
minimum=1,
|
|
maximum=50,
|
|
step=1,
|
|
label="Weight Saving Frequency",
|
|
value=25,
|
|
interactive=True,
|
|
)
|
|
batch_size12 = gr.Slider(
|
|
minimum=1,
|
|
maximum=40,
|
|
step=1,
|
|
label="Batch Size",
|
|
value=default_batch_size,
|
|
interactive=True,
|
|
)
|
|
if_save_latest13 = gr.Radio(
|
|
label="Only save the latest model",
|
|
choices=["yes", "no"],
|
|
value="yes",
|
|
interactive=True,
|
|
visible=False
|
|
)
|
|
if_cache_gpu17 = gr.Radio(
|
|
label="If your dataset is UNDER 10 minutes, cache it to train faster",
|
|
choices=["yes", "no"],
|
|
value="no",
|
|
interactive=True,
|
|
)
|
|
if_save_every_weights18 = gr.Radio(
|
|
label="Save small model at every save point",
|
|
choices=["yes", "no"],
|
|
value="yes",
|
|
interactive=True,
|
|
)
|
|
with gr.Accordion(label="Change pretrains", open=False):
|
|
pretrained = lambda sr, letter: [os.path.abspath(os.path.join('assets/pretrained_v2', file)) for file in os.listdir('assets/pretrained_v2') if file.endswith('.pth') and sr in file and letter in file]
|
|
pretrained_G14 = gr.Dropdown(
|
|
label="pretrained G",
|
|
|
|
choices = pretrained(sr2.value, 'G'),
|
|
value=pretrained(sr2.value, 'G')[0] if len(pretrained(sr2.value, 'G')) > 0 else '',
|
|
interactive=True,
|
|
visible=True
|
|
)
|
|
pretrained_D15 = gr.Dropdown(
|
|
label="pretrained D",
|
|
choices = pretrained(sr2.value, 'D'),
|
|
value= pretrained(sr2.value, 'D')[0] if len(pretrained(sr2.value, 'G')) > 0 else '',
|
|
visible=True,
|
|
interactive=True
|
|
)
|
|
with gr.Row():
|
|
download_model = gr.Button('5.Download Model')
|
|
with gr.Row():
|
|
model_files = gr.Files(label='Your Model and Index file can be downloaded here:')
|
|
download_model.click(
|
|
fn=lambda name: os.listdir(f'assets/weights/{name}') + glob.glob(f'logs/{name.split(".")[0]}/added_*.index'),
|
|
inputs=[training_name],
|
|
outputs=[model_files, info3])
|
|
with gr.Row():
|
|
sr2.change(
|
|
change_sr2,
|
|
[sr2, if_f0_3, version19],
|
|
[pretrained_G14, pretrained_D15],
|
|
)
|
|
version19.change(
|
|
change_version19,
|
|
[sr2, if_f0_3, version19],
|
|
[pretrained_G14, pretrained_D15, sr2],
|
|
)
|
|
if_f0_3.change(
|
|
change_f0,
|
|
[if_f0_3, sr2, version19],
|
|
[f0method8, pretrained_G14, pretrained_D15],
|
|
)
|
|
with gr.Row():
|
|
but5 = gr.Button("1 Click Training", variant="primary", visible=False)
|
|
but3.click(
|
|
click_train,
|
|
[
|
|
training_name,
|
|
sr2,
|
|
if_f0_3,
|
|
spk_id5,
|
|
save_epoch10,
|
|
total_epoch11,
|
|
batch_size12,
|
|
if_save_latest13,
|
|
pretrained_G14,
|
|
pretrained_D15,
|
|
gpus16,
|
|
if_cache_gpu17,
|
|
if_save_every_weights18,
|
|
version19,
|
|
],
|
|
info3,
|
|
api_name="train_start",
|
|
)
|
|
but4.click(train_index, [training_name, version19], info3)
|
|
but5.click(
|
|
train1key,
|
|
[
|
|
training_name,
|
|
sr2,
|
|
if_f0_3,
|
|
dataset_folder,
|
|
spk_id5,
|
|
np7,
|
|
f0method8,
|
|
save_epoch10,
|
|
total_epoch11,
|
|
batch_size12,
|
|
if_save_latest13,
|
|
pretrained_G14,
|
|
pretrained_D15,
|
|
gpus16,
|
|
if_cache_gpu17,
|
|
if_save_every_weights18,
|
|
version19,
|
|
gpus_rmvpe,
|
|
],
|
|
info3,
|
|
api_name="train_start_all",
|
|
)
|
|
|
|
if config.iscolab:
|
|
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
|
|
else:
|
|
app.queue(concurrency_count=511, max_size=1022).launch(
|
|
server_name="0.0.0.0",
|
|
inbrowser=not config.noautoopen,
|
|
server_port=config.listen_port,
|
|
quiet=True,
|
|
)
|
|
|