Create createfile.py
Browse files- createfile.py +133 -0
createfile.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import faiss
|
4 |
+
from sklearn.cluster import MiniBatchKMeans
|
5 |
+
import traceback
|
6 |
+
|
7 |
+
# Set the working directory
|
8 |
+
os.chdir('/content/RVC')
|
9 |
+
|
10 |
+
# Parameters
|
11 |
+
model_name = 'My-Voice'
|
12 |
+
dataset_folder = '/content/dataset'
|
13 |
+
|
14 |
+
def calculate_audio_duration(file_path):
|
15 |
+
# Placeholder function - replace with actual implementation
|
16 |
+
return 0
|
17 |
+
|
18 |
+
# Check cache status based on audio duration
|
19 |
+
try:
|
20 |
+
duration = calculate_audio_duration(dataset_folder)
|
21 |
+
cache = duration < 600
|
22 |
+
except:
|
23 |
+
cache = False
|
24 |
+
|
25 |
+
# Ensure dataset folder is not empty
|
26 |
+
while len(os.listdir(dataset_folder)) < 1:
|
27 |
+
input("Your dataset folder is empty.")
|
28 |
+
|
29 |
+
os.makedirs(f'./logs/{model_name}', exist_ok=True)
|
30 |
+
|
31 |
+
# Run the preprocessing script
|
32 |
+
os.system(f'python infer/modules/train/preprocess.py {dataset_folder} 32000 2 ./logs/{model_name} False 3.0 > /dev/null 2>&1')
|
33 |
+
|
34 |
+
with open(f'./logs/{model_name}/preprocess.log', 'r') as f:
|
35 |
+
if 'end preprocess' in f.read():
|
36 |
+
print("✔ Success")
|
37 |
+
else:
|
38 |
+
print("Error preprocessing data... Make sure your dataset folder is correct.")
|
39 |
+
|
40 |
+
f0method = "rmvpe_gpu"
|
41 |
+
|
42 |
+
# Run the feature extraction scripts
|
43 |
+
if f0method != "rmvpe_gpu":
|
44 |
+
os.system(f'python infer/modules/train/extract/extract_f0_print.py ./logs/{model_name} 2 {f0method}')
|
45 |
+
else:
|
46 |
+
os.system(f'python infer/modules/train/extract/extract_f0_rmvpe.py 1 0 0 ./logs/{model_name} True')
|
47 |
+
|
48 |
+
os.system(f'python infer/modules/train/extract_feature_print.py cuda:0 1 0 ./logs/{model_name} v2 True')
|
49 |
+
|
50 |
+
with open(f'./logs/{model_name}/extract_f0_feature.log', 'r') as f:
|
51 |
+
if 'all-feature-done' in f.read():
|
52 |
+
print("✔ Success")
|
53 |
+
else:
|
54 |
+
print("Error preprocessing data... Make sure your data was preprocessed.")
|
55 |
+
|
56 |
+
def train_index(exp_dir1, version19):
|
57 |
+
exp_dir = f"logs/{exp_dir1}"
|
58 |
+
os.makedirs(exp_dir, exist_ok=True)
|
59 |
+
feature_dir = f"{exp_dir}/3_feature256" if version19 == "v1" else f"{exp_dir}/3_feature768"
|
60 |
+
|
61 |
+
if not os.path.exists(feature_dir):
|
62 |
+
return "请先进行特征提取!"
|
63 |
+
|
64 |
+
listdir_res = list(os.listdir(feature_dir))
|
65 |
+
if len(listdir_res) == 0:
|
66 |
+
return "请先进行特征提取!"
|
67 |
+
|
68 |
+
infos = []
|
69 |
+
npys = []
|
70 |
+
|
71 |
+
for name in sorted(listdir_res):
|
72 |
+
phone = np.load(f"{feature_dir}/{name}")
|
73 |
+
npys.append(phone)
|
74 |
+
|
75 |
+
big_npy = np.concatenate(npys, 0)
|
76 |
+
big_npy_idx = np.arange(big_npy.shape[0])
|
77 |
+
np.random.shuffle(big_npy_idx)
|
78 |
+
big_npy = big_npy[big_npy_idx]
|
79 |
+
|
80 |
+
if big_npy.shape[0] > 2e5:
|
81 |
+
infos.append(f"Trying doing kmeans {big_npy.shape[0]} shape to 10k centers.")
|
82 |
+
yield "\n".join(infos)
|
83 |
+
|
84 |
+
try:
|
85 |
+
big_npy = MiniBatchKMeans(
|
86 |
+
n_clusters=10000,
|
87 |
+
verbose=True,
|
88 |
+
batch_size=256,
|
89 |
+
compute_labels=False,
|
90 |
+
init="random"
|
91 |
+
).fit(big_npy).cluster_centers_
|
92 |
+
except:
|
93 |
+
info = traceback.format_exc()
|
94 |
+
infos.append(info)
|
95 |
+
yield "\n".join(infos)
|
96 |
+
|
97 |
+
np.save(f"{exp_dir}/total_fea.npy", big_npy)
|
98 |
+
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
99 |
+
infos.append(f"{big_npy.shape},{n_ivf}")
|
100 |
+
yield "\n".join(infos)
|
101 |
+
|
102 |
+
index = faiss.index_factory(256 if version19 == "v1" else 768, f"IVF{n_ivf},Flat")
|
103 |
+
infos.append("training")
|
104 |
+
yield "\n".join(infos)
|
105 |
+
|
106 |
+
index_ivf = faiss.extract_index_ivf(index)
|
107 |
+
index_ivf.nprobe = 1
|
108 |
+
index.train(big_npy)
|
109 |
+
faiss.write_index(
|
110 |
+
index,
|
111 |
+
f"{exp_dir}/trained_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index"
|
112 |
+
)
|
113 |
+
|
114 |
+
infos.append("adding")
|
115 |
+
yield "\n".join(infos)
|
116 |
+
|
117 |
+
batch_size_add = 8192
|
118 |
+
for i in range(0, big_npy.shape[0], batch_size_add):
|
119 |
+
index.add(big_npy[i: i + batch_size_add])
|
120 |
+
|
121 |
+
faiss.write_index(
|
122 |
+
index,
|
123 |
+
f"{exp_dir}/added_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index"
|
124 |
+
)
|
125 |
+
|
126 |
+
infos.append(f"成功构建索引,added_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index")
|
127 |
+
|
128 |
+
training_log = train_index(model_name, 'v2')
|
129 |
+
|
130 |
+
for line in training_log:
|
131 |
+
print(line)
|
132 |
+
if 'adding' in line:
|
133 |
+
print("✔ Success")
|