File size: 5,350 Bytes
90f7c1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import os.path
import numpy as np
import pandas as pd
import torch
import yaml
import librosa
import soundfile as sf
from tqdm import tqdm
from diffusers import DDIMScheduler
from pitch_controller.models.unet import UNetPitcher
from pitch_controller.utils import minmax_norm_diff, reverse_minmax_norm_diff
from pitch_controller.modules.BigVGAN.inference import load_model
from utils import get_mel, get_world_mel, get_f0, f0_to_coarse, show_plot, get_matched_f0, log_f0
from pitch_predictor.models.transformer import PitchFormer
import pretty_midi
def prepare_midi_wav(wav_id, midi_id, sr=24000):
midi = pretty_midi.PrettyMIDI(midi_id)
roll = midi.get_piano_roll()
roll = np.pad(roll, ((0, 0), (0, 1000)), constant_values=0)
roll[roll > 0] = 100
onset = midi.get_onsets()
before_onset = list(np.round(onset * 100 - 1).astype(int))
roll[:, before_onset] = 0
wav, sr = librosa.load(wav_id, sr=sr)
start = 0
end = round(100 * len(wav) / sr) / 100
# save audio
wav_seg = wav[round(start * sr):round(end * sr)]
cur_roll = roll[:, round(100 * start):round(100 * end)]
return wav_seg, cur_roll
def algin_mapping(content, target_len):
# align content with mel
src_len = content.shape[-1]
target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device)
temp = torch.arange(src_len+1) * target_len / src_len
for i in range(target_len):
cur_idx = torch.argmin(torch.abs(temp-i))
target[:, i] = content[:, cur_idx]
return target
def midi_to_hz(midi):
idx = torch.zeros(midi.shape[-1])
for frame in range(midi.shape[-1]):
midi_frame = midi[:, frame]
non_zero = midi_frame.nonzero()
if len(non_zero) != 0:
hz = librosa.midi_to_hz(non_zero[0])
idx[frame] = torch.tensor(hz)
return idx
@torch.no_grad()
def score_pitcher(source, pitch_ref, model, hifigan, pitcher, steps=50, shift_semi=0, mask_with_source=False):
wav, midi = prepare_midi_wav(source, pitch_ref, sr=sr)
source_mel = get_world_mel(None, sr=sr, wav=wav)
midi = torch.tensor(midi, dtype=torch.float32)
midi = algin_mapping(midi, source_mel.shape[-1])
midi = midi_to_hz(midi)
f0_ori = np.nan_to_num(get_f0(source))
source_mel = torch.from_numpy(source_mel).float().unsqueeze(0).to(device)
f0_ori = torch.from_numpy(f0_ori).float().unsqueeze(0).to(device)
midi = midi.unsqueeze(0).to(device)
f0_pred = pitcher(sp=source_mel, midi=midi)
if mask_with_source:
# mask unvoiced frames based on original pitch estimation
f0_pred[f0_ori == 0] = 0
f0_pred = f0_pred.cpu().numpy()[0]
# limit range
f0_pred[f0_pred < librosa.note_to_hz('C2')] = 0
f0_pred[f0_pred > librosa.note_to_hz('C6')] = librosa.note_to_hz('C6')
f0_pred = f0_pred * (2 ** (shift_semi / 12))
f0_pred = log_f0(f0_pred, {'f0_bin': 345,
'f0_min': librosa.note_to_hz('C2'),
'f0_max': librosa.note_to_hz('C#6')})
f0_pred = torch.from_numpy(f0_pred).float().unsqueeze(0).to(device)
noise_scheduler = DDIMScheduler(num_train_timesteps=1000)
generator = torch.Generator(device=device).manual_seed(2024)
noise_scheduler.set_timesteps(steps)
noise = torch.randn(source_mel.shape, generator=generator, device=device)
pred = noise
source_x = minmax_norm_diff(source_mel, vmax=max_mel, vmin=min_mel)
for t in tqdm(noise_scheduler.timesteps):
pred = noise_scheduler.scale_model_input(pred, t)
model_output = model(x=pred, mean=source_x, f0=f0_pred, t=t, ref=None, embed=None)
pred = noise_scheduler.step(model_output=model_output,
timestep=t,
sample=pred,
eta=1, generator=generator).prev_sample
pred = reverse_minmax_norm_diff(pred, vmax=max_mel, vmin=min_mel)
pred_audio = hifigan(pred)
pred_audio = pred_audio.cpu().squeeze().clamp(-1, 1)
return pred_audio
if __name__ == '__main__':
min_mel = np.log(1e-5)
max_mel = 2.5
sr = 24000
use_gpu = torch.cuda.is_available()
device = 'cuda' if use_gpu else 'cpu'
# load diffusion model
config = yaml.load(open('pitch_controller/config/DiffWorld_24k.yaml'), Loader=yaml.FullLoader)
mel_cfg = config['logmel']
ddpm_cfg = config['ddpm']
unet_cfg = config['unet']
model = UNetPitcher(**unet_cfg)
unet_path = 'ckpts/world_fixed_40.pt'
state_dict = torch.load(unet_path)
for key in list(state_dict.keys()):
state_dict[key.replace('_orig_mod.', '')] = state_dict.pop(key)
model.load_state_dict(state_dict)
if use_gpu:
model.cuda()
model.eval()
# load vocoder
hifi_path = 'ckpts/bigvgan_24khz_100band/g_05000000.pt'
hifigan, cfg = load_model(hifi_path, device=device)
hifigan.eval()
# load pitch predictor
pitcher = PitchFormer(100, 512).to(device)
ckpt = torch.load('ckpts/ckpt_transformer_pitch/transformer_pitch_360.pt')
pitcher.load_state_dict(ckpt)
pitcher.eval()
pred_audio = score_pitcher('examples/score_vocal.wav', 'examples/score_midi.midi', model, hifigan, pitcher, steps=50)
sf.write('output_score.wav', pred_audio, samplerate=sr)
|