File size: 5,350 Bytes
90f7c1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os.path

import numpy as np
import pandas as pd
import torch
import yaml
import librosa
import soundfile as sf
from tqdm import tqdm

from diffusers import DDIMScheduler
from pitch_controller.models.unet import UNetPitcher
from pitch_controller.utils import minmax_norm_diff, reverse_minmax_norm_diff
from pitch_controller.modules.BigVGAN.inference import load_model
from utils import get_mel, get_world_mel, get_f0, f0_to_coarse, show_plot, get_matched_f0, log_f0
from pitch_predictor.models.transformer import PitchFormer
import pretty_midi


def prepare_midi_wav(wav_id, midi_id, sr=24000):
    midi = pretty_midi.PrettyMIDI(midi_id)
    roll = midi.get_piano_roll()
    roll = np.pad(roll, ((0, 0), (0, 1000)), constant_values=0)
    roll[roll > 0] = 100

    onset = midi.get_onsets()
    before_onset = list(np.round(onset * 100 - 1).astype(int))
    roll[:, before_onset] = 0

    wav, sr = librosa.load(wav_id, sr=sr)

    start = 0
    end = round(100 * len(wav) / sr) / 100
    # save audio
    wav_seg = wav[round(start * sr):round(end * sr)]
    cur_roll = roll[:, round(100 * start):round(100 * end)]
    return wav_seg, cur_roll


def algin_mapping(content, target_len):
    # align content with mel
    src_len = content.shape[-1]
    target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device)
    temp = torch.arange(src_len+1) * target_len / src_len

    for i in range(target_len):
        cur_idx = torch.argmin(torch.abs(temp-i))
        target[:, i] = content[:, cur_idx]
    return target


def midi_to_hz(midi):
    idx = torch.zeros(midi.shape[-1])
    for frame in range(midi.shape[-1]):
        midi_frame = midi[:, frame]
        non_zero = midi_frame.nonzero()
        if len(non_zero) != 0:
            hz = librosa.midi_to_hz(non_zero[0])
            idx[frame] = torch.tensor(hz)
    return idx


@torch.no_grad()
def score_pitcher(source, pitch_ref, model, hifigan, pitcher, steps=50, shift_semi=0, mask_with_source=False):
    wav, midi = prepare_midi_wav(source, pitch_ref, sr=sr)

    source_mel = get_world_mel(None, sr=sr, wav=wav)

    midi = torch.tensor(midi, dtype=torch.float32)
    midi = algin_mapping(midi, source_mel.shape[-1])
    midi = midi_to_hz(midi)

    f0_ori = np.nan_to_num(get_f0(source))

    source_mel = torch.from_numpy(source_mel).float().unsqueeze(0).to(device)
    f0_ori = torch.from_numpy(f0_ori).float().unsqueeze(0).to(device)
    midi = midi.unsqueeze(0).to(device)

    f0_pred = pitcher(sp=source_mel, midi=midi)
    if mask_with_source:
        # mask unvoiced frames based on original pitch estimation
        f0_pred[f0_ori == 0] = 0
    f0_pred = f0_pred.cpu().numpy()[0]
    # limit range
    f0_pred[f0_pred < librosa.note_to_hz('C2')] = 0
    f0_pred[f0_pred > librosa.note_to_hz('C6')] = librosa.note_to_hz('C6')

    f0_pred = f0_pred * (2 ** (shift_semi / 12))

    f0_pred = log_f0(f0_pred, {'f0_bin': 345,
                               'f0_min': librosa.note_to_hz('C2'),
                               'f0_max': librosa.note_to_hz('C#6')})
    f0_pred = torch.from_numpy(f0_pred).float().unsqueeze(0).to(device)

    noise_scheduler = DDIMScheduler(num_train_timesteps=1000)
    generator = torch.Generator(device=device).manual_seed(2024)

    noise_scheduler.set_timesteps(steps)
    noise = torch.randn(source_mel.shape, generator=generator, device=device)
    pred = noise
    source_x = minmax_norm_diff(source_mel, vmax=max_mel, vmin=min_mel)

    for t in tqdm(noise_scheduler.timesteps):
        pred = noise_scheduler.scale_model_input(pred, t)
        model_output = model(x=pred, mean=source_x, f0=f0_pred, t=t, ref=None, embed=None)
        pred = noise_scheduler.step(model_output=model_output,
                                    timestep=t,
                                    sample=pred,
                                    eta=1, generator=generator).prev_sample

    pred = reverse_minmax_norm_diff(pred, vmax=max_mel, vmin=min_mel)

    pred_audio = hifigan(pred)
    pred_audio = pred_audio.cpu().squeeze().clamp(-1, 1)

    return pred_audio


if __name__ == '__main__':
    min_mel = np.log(1e-5)
    max_mel = 2.5
    sr = 24000

    use_gpu = torch.cuda.is_available()
    device = 'cuda' if use_gpu else 'cpu'

    # load diffusion model
    config = yaml.load(open('pitch_controller/config/DiffWorld_24k.yaml'), Loader=yaml.FullLoader)
    mel_cfg = config['logmel']
    ddpm_cfg = config['ddpm']
    unet_cfg = config['unet']
    model = UNetPitcher(**unet_cfg)
    unet_path = 'ckpts/world_fixed_40.pt'

    state_dict = torch.load(unet_path)
    for key in list(state_dict.keys()):
        state_dict[key.replace('_orig_mod.', '')] = state_dict.pop(key)
    model.load_state_dict(state_dict)
    if use_gpu:
        model.cuda()
    model.eval()

    #  load vocoder
    hifi_path = 'ckpts/bigvgan_24khz_100band/g_05000000.pt'
    hifigan, cfg = load_model(hifi_path, device=device)
    hifigan.eval()

    # load pitch predictor
    pitcher = PitchFormer(100, 512).to(device)
    ckpt = torch.load('ckpts/ckpt_transformer_pitch/transformer_pitch_360.pt')
    pitcher.load_state_dict(ckpt)
    pitcher.eval()

    pred_audio = score_pitcher('examples/score_vocal.wav', 'examples/score_midi.midi', model, hifigan, pitcher, steps=50)
    sf.write('output_score.wav', pred_audio, samplerate=sr)