File size: 6,933 Bytes
90f7c1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import numpy as np
import torch
import librosa
from librosa.core import load
import matplotlib.pyplot as plt
import pysptk
import pyworld as pw
from fastdtw import fastdtw
from scipy import spatial
from librosa.filters import mel as librosa_mel_fn
mel_basis = librosa_mel_fn(sr=24000, n_fft=1024, n_mels=100, fmin=0, fmax=12000)
def _get_best_mcep_params(fs):
if fs == 16000:
return 23, 0.42
elif fs == 22050:
return 34, 0.45
elif fs == 24000:
return 34, 0.46
elif fs == 44100:
return 39, 0.53
elif fs == 48000:
return 39, 0.55
else:
raise ValueError(f"Not found the setting for {fs}.")
def get_mel(wav_path):
wav, _ = load(wav_path, sr=24000)
wav = wav[:(wav.shape[0] // 256)*256]
wav = np.pad(wav, 384, mode='reflect')
stft = librosa.core.stft(wav, n_fft=1024, hop_length=256, win_length=1024, window='hann', center=False)
stftm = np.sqrt(np.real(stft) ** 2 + np.imag(stft) ** 2 + (1e-9))
mel_spectrogram = np.matmul(mel_basis, stftm)
if mel_spectrogram.shape[-1] % 8 != 0:
mel_spectrogram = np.pad(mel_spectrogram, ((0, 0), (0, 8 - mel_spectrogram.shape[-1] % 8)), 'minimum')
log_mel_spectrogram = np.log(np.clip(mel_spectrogram, a_min=1e-5, a_max=None))
return log_mel_spectrogram
def get_world_mel(wav_path=None, sr=24000, wav=None):
if wav_path is not None:
wav, _ = librosa.load(wav_path, sr=24000)
wav = (wav * 32767).astype(np.int16)
wav = (wav / 32767).astype(np.float64)
# wav = wav.astype(np.float64)
wav = wav[:(wav.shape[0] // 256) * 256]
# _f0, t = pw.dio(wav, sr, frame_period=256/sr*1000)
_f0, t = pw.dio(wav, sr)
f0 = pw.stonemask(wav, _f0, t, sr)
sp = pw.cheaptrick(wav, f0, t, sr)
ap = pw.d4c(wav, f0, t, sr)
wav_hat = pw.synthesize(f0 * 0, sp, ap, sr)
# wav_hat = pw.synthesize(f0 * 0, sp, ap, sr, frame_period=256/sr*1000)
# pyworld output does not pad left
wav_hat = wav_hat[:len(wav)]
# wav_hat = wav_hat[256//2: len(wav)+256//2]
assert len(wav_hat) == len(wav)
wav = wav_hat.astype(np.float32)
wav = np.pad(wav, 384, mode='reflect')
stft = librosa.core.stft(wav, n_fft=1024, hop_length=256, win_length=1024, window='hann', center=False)
stftm = np.sqrt(np.real(stft) ** 2 + np.imag(stft) ** 2 + (1e-9))
mel_spectrogram = np.matmul(mel_basis, stftm)
if mel_spectrogram.shape[-1] % 8 != 0:
mel_spectrogram = np.pad(mel_spectrogram, ((0, 0), (0, 8 - mel_spectrogram.shape[-1] % 8)), 'minimum')
log_mel_spectrogram = np.log(np.clip(mel_spectrogram, a_min=1e-5, a_max=None))
return log_mel_spectrogram
def get_f0(wav_path, method='pyin', padding=True):
if method == 'pyin':
wav, sr = load(wav_path, sr=24000)
wav = wav[:(wav.shape[0] // 256) * 256]
wav = np.pad(wav, 384, mode='reflect')
f0, _, _ = librosa.pyin(wav, frame_length=1024, hop_length=256, center=False, sr=24000,
fmin=librosa.note_to_hz('C2'),
fmax=librosa.note_to_hz('C6'), fill_na=0)
elif method == 'world':
wav, sr = librosa.load(wav_path, sr=24000)
wav = (wav * 32767).astype(np.int16)
wav = (wav / 32767).astype(np.float64)
_f0, t = pw.dio(wav, fs=24000, frame_period=256/sr*1000,
f0_floor=librosa.note_to_hz('C2'),
f0_ceil=librosa.note_to_hz('C6'))
f0 = pw.stonemask(wav, _f0, t, sr)
f0 = f0[:-1]
if padding is True:
if f0.shape[-1] % 8 !=0:
f0 = np.pad(f0, ((0, 8-f0.shape[-1] % 8)), 'constant', constant_values=0)
return f0
def get_mcep(x, n_fft=1024, n_shift=256, sr=24000):
x, sr = load(x, sr=24000)
n_frame = (x.shape[0] // 256)
x = np.pad(x, 384, mode='reflect')
# n_frame = (len(x) - n_fft) // n_shift + 1
win = pysptk.sptk.hamming(n_fft)
mcep_dim, mcep_alpha = _get_best_mcep_params(sr)
mcep = [pysptk.mcep(x[n_shift * i: n_shift * i + n_fft] * win,
mcep_dim, mcep_alpha,
eps=1e-6, etype=1,)
for i in range(n_frame)
]
mcep = np.stack(mcep)
return mcep
def get_matched_f0(x, y, method='world', n_fft=1024, n_shift=256):
# f0_x = get_f0(x, method='pyin', padding=False)
f0_y = get_f0(y, method=method, padding=False)
# print(f0_y.max())
# print(f0_y.min())
mcep_x = get_mcep(x, n_fft=n_fft, n_shift=n_shift)
mcep_y = get_mcep(y, n_fft=n_fft, n_shift=n_shift)
_, path = fastdtw(mcep_x, mcep_y, dist=spatial.distance.euclidean)
twf = np.array(path).T
# f0_x = gen_mcep[twf[0]]
nearest = []
for i in range(len(f0_y)):
idx = np.argmax(1 * twf[0] == i)
nearest.append(twf[1][idx])
f0_y = f0_y[nearest]
# f0_y = f0_y.astype(np.float32)
if f0_y.shape[-1] % 8 != 0:
f0_y = np.pad(f0_y, ((0, 8 - f0_y.shape[-1] % 8)), 'constant', constant_values=0)
return f0_y
def f0_to_coarse(f0, hparams):
f0_bin = hparams['f0_bin']
f0_max = hparams['f0_max']
f0_min = hparams['f0_min']
is_torch = isinstance(f0, torch.Tensor)
# to mel scale
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
unvoiced = (f0_mel == 0)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
f0_mel[unvoiced] = 0
f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(int)
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 0, (f0_coarse.max(), f0_coarse.min())
return f0_coarse
def log_f0(f0, hparams):
f0_bin = hparams['f0_bin']
f0_max = hparams['f0_max']
f0_min = hparams['f0_min']
f0_mel = np.zeros_like(f0)
f0_mel[f0 != 0] = 12*np.log2(f0[f0 != 0]/f0_min) + 1
f0_mel_min = 12*np.log2(f0_min/f0_min) + 1
f0_mel_max = 12*np.log2(f0_max/f0_min) + 1
unvoiced = (f0_mel == 0)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
f0_mel[unvoiced] = 0
f0_coarse = np.rint(f0_mel).astype(int)
assert f0_coarse.max() <= (f0_bin-1) and f0_coarse.min() >= 0, (f0_coarse.max(), f0_coarse.min())
return f0_coarse
def show_plot(tensor):
tensor = tensor.squeeze().cpu()
# plt.style.use('default')
fig, ax = plt.subplots(figsize=(12, 3))
im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation='none')
plt.colorbar(im, ax=ax)
plt.tight_layout()
fig.canvas.draw()
plt.show()
if __name__ == '__main__':
mel = get_mel('target.wav')
f0 = get_f0('target.wav') |