File size: 10,217 Bytes
90f7c1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os, json, argparse, yaml
import numpy as np
from tqdm import tqdm

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.cuda.amp import autocast, GradScaler

from diffusers import DDIMScheduler

from dataset import VCDecLPCDataset, VCDecLPCBatchCollate, VCDecLPCTest
from models.unet import UNetVC
from modules.BigVGAN.inference import load_model
from utils import save_plot, save_audio
from utils import minmax_norm_diff, reverse_minmax_norm_diff


parser = argparse.ArgumentParser()
parser.add_argument('-config', type=str, default='config/DiffWorld_24k_log.yaml')

parser.add_argument('-seed', type=int, default=98)
parser.add_argument('-amp', type=bool, default=True)
parser.add_argument('-compile', type=bool, default=False)

parser.add_argument('-data_dir', type=str, default='../24k_center/')
parser.add_argument('-lpc_dir', type=str, default='world')
parser.add_argument('-vocoder_dir', type=str, default='modules/BigVGAN/ckpt/bigvgan_base_24khz_100band/g_05000000')

parser.add_argument('-train_frames', type=int, default=128)
parser.add_argument('-batch_size', type=int, default=32)
parser.add_argument('-test_size', type=int, default=1)
parser.add_argument('-num_workers', type=int, default=4)
parser.add_argument('-lr', type=float, default=5e-5)
parser.add_argument('-weight_decay', type=int, default=1e-6)

parser.add_argument('-epochs', type=int, default=80)
parser.add_argument('-save_every', type=int, default=2)
parser.add_argument('-log_step', type=int, default=200)
parser.add_argument('-log_dir', type=str, default='logs_dec_world_24k')
parser.add_argument('-ckpt_dir', type=str, default='ckpt_world_24k')

args = parser.parse_args()
args.save_ori = True
config = yaml.load(open(args.config), Loader=yaml.FullLoader)
mel_cfg = config['logmel']
ddpm_cfg = config['ddpm']
unet_cfg = config['unet']
f0_type = unet_cfg['pitch_type']

if __name__ == "__main__":
    torch.manual_seed(args.seed)
    np.random.seed(args.seed)
    if torch.cuda.is_available():
        args.device = 'cuda'
        torch.cuda.manual_seed(args.seed)
        torch.cuda.manual_seed_all(args.seed)
        torch.backends.cuda.matmul.allow_tf32 = True
        if torch.backends.cudnn.is_available():
            torch.backends.cudnn.deterministic = True
            torch.backends.cudnn.benchmark = True
    else:
       args.device = 'cpu'

    if os.path.exists(args.log_dir) is False:
        os.makedirs(args.log_dir)

    if os.path.exists(args.ckpt_dir) is False:
        os.makedirs(args.ckpt_dir)

    print('Initializing vocoder...')
    hifigan, cfg = load_model(args.vocoder_dir, device=args.device)

    print('Initializing data loaders...')
    train_set = VCDecLPCDataset(args.data_dir, subset='train', content_dir=args.lpc_dir, f0_type=f0_type)
    collate_fn = VCDecLPCBatchCollate(args.train_frames)
    train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True,
                              collate_fn=collate_fn, num_workers=args.num_workers, drop_last=True)

    val_set = VCDecLPCTest(args.data_dir, content_dir=args.lpc_dir, f0_type=f0_type)
    val_loader = DataLoader(val_set, batch_size=1, shuffle=False)

    print('Initializing and loading models...')
    model = UNetVC(**unet_cfg).to(args.device)
    print('Number of parameters = %.2fm\n' % (model.nparams / 1e6))

    # prepare DPM scheduler
    noise_scheduler = DDIMScheduler(num_train_timesteps=ddpm_cfg['num_train_steps'])

    print('Initializing optimizers...')
    optimizer = torch.optim.AdamW(params=model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
    scaler = GradScaler()

    if args.compile:
        model = torch.compile(model)

    print('Start training.')
    global_step = 0
    for epoch in range(1, args.epochs + 1):
        print(f'Epoch: {epoch} [iteration: {global_step}]')
        model.train()
        losses = []

        for step, batch in enumerate(tqdm(train_loader)):
            optimizer.zero_grad()

            # make spectrogram range from -1 to 1
            mel = batch['mel1'].to(args.device)
            mel = minmax_norm_diff(mel, vmax=mel_cfg['max'], vmin=mel_cfg['min'])

            if unet_cfg["use_ref_t"]:
                mel_ref = batch['mel2'].to(args.device)
                mel_ref = minmax_norm_diff(mel_ref, vmax=mel_cfg['max'], vmin=mel_cfg['min'])
            else:
                mel_ref = None

            f0 = batch['f0_1'].to(args.device)

            mean = batch['content1'].to(args.device)
            mean = minmax_norm_diff(mean, vmax=mel_cfg['max'], vmin=mel_cfg['min'])

            noise = torch.randn(mel.shape).to(args.device)
            timesteps = torch.randint(0, noise_scheduler.num_train_timesteps,
                                      (args.batch_size,),
                                      device=args.device, ).long()

            noisy_mel = noise_scheduler.add_noise(mel, noise, timesteps)

            if args.amp:
                with autocast():
                    noise_pred = model(x=noisy_mel, mean=mean, f0=f0, t=timesteps, ref=mel_ref, embed=None)
                    loss = F.mse_loss(noise_pred, noise)
                scaler.scale(loss).backward()
                scaler.step(optimizer)
                scaler.update()
            else:
                noise_pred = model(x=noisy_mel, mean=mean, f0=f0, t=timesteps, ref=mel_ref, embed=None)
                loss = F.mse_loss(noise_pred, noise)
                # Backward propagation
                loss.backward()
                optimizer.step()

            losses.append(loss.item())
            global_step += 1

            if global_step % args.log_step == 0:
                losses = np.asarray(losses)
                # msg = 'Epoch %d: loss = %.4f\n' % (epoch, np.mean(losses))
                msg = '\nEpoch: [{}][{}]\t' \
                      'Batch: [{}][{}]\tLoss: {:.6f}\n'.format(epoch,
                                                               args.epochs,
                                                               step+1,
                                                               len(train_loader),
                                                               np.mean(losses))
                with open(f'{args.log_dir}/train_dec.log', 'a') as f:
                    f.write(msg)
                losses = []

        if epoch % args.save_every > 0:
            continue

        print('Saving model...\n')
        ckpt = model.state_dict()
        torch.save(ckpt, f=f"{args.ckpt_dir}/lpc_vc_{epoch}.pt")

        print('Inference...\n')
        noise = None
        noise_scheduler.set_timesteps(ddpm_cfg['inference_steps'])
        model.eval()
        with torch.no_grad():
            for i, batch in enumerate(val_loader):
                # optimizer.zero_grad()
                generator = torch.Generator(device=args.device).manual_seed(args.seed)

                mel = batch['mel1'].to(args.device)
                mel = minmax_norm_diff(mel, vmax=mel_cfg['max'], vmin=mel_cfg['min'])

                if unet_cfg["use_ref_t"]:
                    mel_ref = batch['mel2'].to(args.device)
                    mel_ref = minmax_norm_diff(mel_ref, vmax=mel_cfg['max'], vmin=mel_cfg['min'])
                else:
                    mel_ref = None

                f0 = batch['f0_1'].to(args.device)
                embed = batch['embed'].to(args.device)

                mean = batch['content1'].to(args.device)
                mean = minmax_norm_diff(mean, vmax=mel_cfg['max'], vmin=mel_cfg['min'])

                # make spectrogram range from -1 to 1
                if noise is None:
                    noise = torch.randn(mel.shape,
                                        generator=generator,
                                        device=args.device,
                                        )
                pred = noise

                for t in noise_scheduler.timesteps:
                    pred = noise_scheduler.scale_model_input(pred, t)
                    model_output = model(x=pred, mean=mean, f0=f0, t=t, ref=mel_ref, embed=None)
                    pred = noise_scheduler.step(model_output=model_output,
                                                timestep=t,
                                                sample=pred,
                                                eta=ddpm_cfg['eta'], generator=generator).prev_sample


                if os.path.exists(f'{args.log_dir}/audio/{i}/') is False:
                    os.makedirs(f'{args.log_dir}/audio/{i}/')
                    os.makedirs(f'{args.log_dir}/pic/{i}/')

                # save pred
                pred = reverse_minmax_norm_diff(pred, vmax=mel_cfg['max'], vmin=mel_cfg['min'])
                save_plot(pred.squeeze().cpu(), f'{args.log_dir}/pic/{i}/{epoch}_pred.png')
                audio = hifigan(pred)
                save_audio(f'{args.log_dir}/audio/{i}/{epoch}_pred.wav', mel_cfg['sampling_rate'], audio)

                if args.save_ori is True:
                    # save ref
                    # mel_ref = reverse_minmax_norm_diff(mel_ref, vmax=mel_cfg['max'], vmin=mel_cfg['min'])
                    # save_plot(mel_ref.squeeze().cpu(), f'{args.log_dir}/pic/{i}/{epoch}_ref.png')
                    # audio = hifigan(mel_ref)
                    # save_audio(f'{args.log_dir}/audio/{i}/{epoch}_ref.wav', mel_cfg['sampling_rate'], audio)

                    # save source
                    mel = reverse_minmax_norm_diff(mel, vmax=mel_cfg['max'], vmin=mel_cfg['min'])
                    save_plot(mel.squeeze().cpu(), f'{args.log_dir}/pic/{i}/{epoch}_source.png')
                    audio = hifigan(mel)
                    save_audio(f'{args.log_dir}/audio/{i}/{epoch}_source.wav', mel_cfg['sampling_rate'], audio)

                    # save content
                    mean = reverse_minmax_norm_diff(mean, vmax=mel_cfg['max'], vmin=mel_cfg['min'])
                    save_plot(mean.squeeze().cpu(), f'{args.log_dir}/pic/{i}/{epoch}_avg.png')
                    audio = hifigan(mean)
                    save_audio(f'{args.log_dir}/audio/{i}/{epoch}_avg.wav', mel_cfg['sampling_rate'], audio)

            args.save_ori = False