Hopper1394 commited on
Commit
ba5c7ef
·
verified ·
1 Parent(s): 4eee85d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +147 -73
README.md CHANGED
@@ -1,76 +1,150 @@
1
  ---
2
  license: mit
 
 
 
 
3
  ---
4
- ### Model Card for Telegram Trading Bot
5
-
6
- #### Overview
7
- - **Project Name:** Telegram Trading Bot
8
- - **Purpose:** Predict stock market prices and generate trade signals
9
- - **Platforms Supported:** TradingView, Forex, Coinbase, Binance, Yahoo Finance, Bloomberg
10
-
11
- #### Model Details
12
- - **Model Type:** Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM) layers
13
- - **Framework Used:** TensorFlow/Keras
14
- - **Input Data:** Historical price data (open, high, low, close, volume) from various financial platforms
15
- - **Output:** Predicted price and trade signal (Buy/Sell)
16
-
17
- #### Data Sources
18
- - **Binance:** Real-time cryptocurrency prices
19
- - **Alpha Vantage:** Stock and Forex market data
20
- - **Yahoo Finance:** Stock prices and financial data
21
- - **TradingView:** Technical analysis and financial market data (Placeholder for future integration)
22
- - **Bloomberg:** Financial data and news (Placeholder for future integration)
23
- - **Coinbase:** Cryptocurrency prices (Placeholder for future integration)
24
-
25
- #### Features
26
- - **Real-time Data Acquisition:**
27
- - Fetches latest market data from multiple platforms
28
- - Supports diverse financial instruments including stocks, forex, and cryptocurrencies
29
- - ♦ **Data Preprocessing:**
30
- - Normalizes and scales data for model input
31
- - Handles missing data and ensures consistency across datasets
32
- - **Neural Network Model:**
33
- - Utilizes LSTM layers to capture temporal dependencies in financial data
34
- - Trained on historical price data to predict future prices
35
- - **Trade Signal Generation:**
36
- - Generates Buy/Sell signals based on predicted price trends
37
- - Provides actionable insights for trading on platforms like Binomo
38
- - **Integration with Telegram:**
39
- - Responds to user commands for real-time trading signals
40
- - Simple and interactive user interface through Telegram bot
41
-
42
- #### Usage
43
- - **Command: `/start`**
44
- - Initializes the bot and provides basic instructions
45
- - **Command: `/signal [pair]`**
46
- - Generates and returns a trade signal for the specified currency pair (default: BTCUSDT)
47
-
48
- #### Performance Metrics
49
- - **Evaluation Metrics:**
50
- - Mean Squared Error (MSE) for regression accuracy
51
- - Accuracy of trade signals (Buy/Sell) compared to actual market movements
52
- - **Training Data:**
53
- - Historical price data from supported platforms
54
- - **Validation:**
55
- - Split historical data into training and validation sets
56
- - Evaluate model performance on unseen validation data
57
-
58
- #### Limitations and Future Work
59
- - ♦ **Current Limitations:**
60
- - Placeholder integrations for TradingView, Bloomberg, and Coinbase
61
- - Model performance highly dependent on the quality and granularity of data
62
- - Limited to hourly predictions; higher frequency data may be needed for intraday trading
63
- - ♦ **Future Enhancements:**
64
- - Complete integration with TradingView, Bloomberg, and Coinbase
65
- - Experiment with different neural network architectures and hyperparameters
66
- - Incorporate additional features such as sentiment analysis from news and social media
67
-
68
- #### Ethical Considerations
69
- - **User Discretion:**
70
- - The bot provides trade signals but users should exercise caution and perform their own analysis before making trading decisions.
71
- - **Data Privacy:**
72
- - Ensure secure handling of API keys and user data.
73
- - **Financial Risk:**
74
- - Trading involves financial risk; users should understand the risks involved and use the bot responsibly.
75
-
76
- This model card provides a comprehensive overview of the Telegram Trading Bot, highlighting its capabilities, data sources, features, and considerations for future development.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ pipeline_tag: depth-estimation
7
  ---
8
+ # config.py
9
+ BINANCE_API_KEY = 'your_binance_api_key'
10
+ ALPHA_VANTAGE_API_KEY = 'your_alpha_vantage_api_key'
11
+ YAHOO_FINANCE_API_KEY = 'your_yahoo_finance_api_key'
12
+ TRADING_VIEW_API_KEY = 'your_trading_view_api_key'
13
+ BINOMO_API_KEY = 'your_binomo_api_key'
14
+ TELEGRAM_BOT_API_KEY = 'your_telegram_bot_api_key'
15
+
16
+ # data_acquisition.py
17
+ import requests
18
+ import pandas as pd
19
+ import numpy as np
20
+ from sklearn.preprocessing import StandardScaler
21
+ from tensorflow.keras.models import Sequential
22
+ from tensorflow.keras.layers import LSTM, Dense, Dropout
23
+ from telegram.ext import Updater, CommandHandler
24
+
25
+ def fetch_binance_data(pair):
26
+ url = f"https://api.binance.com/api/v3/klines?symbol={pair}&interval=1h"
27
+ response = requests.get(url)
28
+ data = response.json()
29
+ df = pd.DataFrame(data, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume', 'close_time', 'quote_asset_volume', 'number_of_trades', 'taker_buy_base_asset_volume', 'taker_buy_quote_asset_volume', 'ignore'])
30
+ df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms')
31
+ return df[['timestamp', 'open', 'high', 'low', 'close', 'volume']]
32
+
33
+ def fetch_alpha_vantage_data(pair):
34
+ symbol = pair.split("USDT")[0] # Assuming pair like BTCUSDT
35
+ url = f"https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=60min&apikey={ALPHA_VANTAGE_API_KEY}"
36
+ response = requests.get(url)
37
+ data = response.json()
38
+ time_series_key = 'Time Series (60min)'
39
+ if time_series_key not in data:
40
+ raise ValueError(f"Error fetching data from Alpha Vantage: {data}")
41
+ df = pd.DataFrame(data[time_series_key]).T
42
+ df.columns = ['open', 'high', 'low', 'close', 'volume']
43
+ df.index = pd.to_datetime(df.index)
44
+ return df.reset_index().rename(columns={'index': 'timestamp'})
45
+
46
+ def fetch_yahoo_finance_data(pair):
47
+ url = f"https://yfapi.net/v8/finance/chart/{pair}?interval=60m"
48
+ headers = {'x-api-key': YAHOO_FINANCE_API_KEY}
49
+ response = requests.get(url, headers=headers)
50
+ data = response.json()
51
+ timestamps = data['chart']['result'][0]['timestamp']
52
+ ohlc = data['chart']['result'][0]['indicators']['quote'][0]
53
+ df = pd.DataFrame({
54
+ 'timestamp': pd.to_datetime(timestamps, unit='s'),
55
+ 'open': ohlc['open'],
56
+ 'high': ohlc['high'],
57
+ 'low': ohlc['low'],
58
+ 'close': ohlc['close'],
59
+ 'volume': ohlc['volume']
60
+ })
61
+ return df
62
+
63
+ def fetch_trading_view_data(pair):
64
+ # Placeholder for TradingView API data fetching
65
+ raise NotImplementedError("TradingView API integration not implemented.")
66
+
67
+ def fetch_binomo_data(pair):
68
+ # Placeholder for Binomo API data fetching
69
+ raise NotImplementedError("Binomo API integration not implemented.")
70
+
71
+ def get_combined_data(pair):
72
+ df_binance = fetch_binance_data(pair)
73
+ df_alpha = fetch_alpha_vantage_data(pair)
74
+ df_yahoo = fetch_yahoo_finance_data(pair)
75
+ # Merge dataframes on timestamp
76
+ df = pd.merge(df_binance, df_alpha, on='timestamp', suffixes=('_binance', '_alpha'))
77
+ df = pd.merge(df, df_yahoo, on='timestamp', suffixes=('', '_yahoo'))
78
+ # Drop any redundant columns or handle conflicts
79
+ return df
80
+
81
+ def preprocess_data(df):
82
+ df = df.dropna()
83
+ scaler = StandardScaler()
84
+ scaled_data = scaler.fit_transform(df[['open', 'high', 'low', 'close', 'volume']])
85
+ return scaled_data, scaler
86
+
87
+ def create_dataset(data, time_step=60):
88
+ X, Y = [], []
89
+ for i in range(len(data) - time_step - 1):
90
+ a = data[i:(i + time_step), :]
91
+ X.append(a)
92
+ Y.append(data[i + time_step, 3]) # Assuming 'close' price is the target
93
+ return np.array(X), np.array(Y)
94
+
95
+ def build_model(input_shape):
96
+ model = Sequential()
97
+ model.add(LSTM(50, return_sequences=True, input_shape=input_shape))
98
+ model.add(LSTM(50, return_sequences=False))
99
+ model.add(Dropout(0.2))
100
+ model.add(Dense(25))
101
+ model.add(Dense(1))
102
+ model.compile(optimizer='adam', loss='mean_squared_error')
103
+ return model
104
+
105
+ def train_model(df):
106
+ data, scaler = preprocess_data(df)
107
+ X, Y = create_dataset(data)
108
+ X_train, Y_train = X[:int(len(X) * 0.8)], Y[:int(len(Y) * 0.8)]
109
+ X_val, Y_val = X[int(len(X) * 0.8):], Y[int(len(Y) * 0.8):]
110
+ model = build_model((X_train.shape[1], X_train.shape[2]))
111
+ model.fit(X_train, Y_train, validation_data=(X_val, Y_val), epochs=20, batch_size=32)
112
+ return model, scaler
113
+
114
+ def generate_signal(pair):
115
+ df = get_combined_data(pair)
116
+ model, scaler = train_model(df)
117
+ recent_data = df.tail(60).drop(columns=['timestamp'])
118
+ scaled_recent_data = scaler.transform(recent_data)
119
+ prediction = model.predict(np.expand_dims(scaled_recent_data, axis=0))
120
+ last_close = df['close'].iloc[-1]
121
+ if prediction > last_close:
122
+ return "Buy"
123
+ else:
124
+ return "Sell"
125
+
126
+ def start(update, context):
127
+ context.bot.send_message(chat_id=update.effective_chat.id, text="I'm a trading bot, how can I help you today?")
128
+
129
+ def signal(update, context):
130
+ pair = context.args[0] if context.args else 'BTCUSDT'
131
+ try:
132
+ trade_signal = generate_signal(pair)
133
+ context.bot.send_message(chat_id=update.effective_chat.id, text=f"Trade Signal for {pair}: {trade_signal}")
134
+ except Exception as e:
135
+ context.bot.send_message(chat_id=update.effective_chat.id, text=f"Error: {e}")
136
+
137
+ def main():
138
+ updater = Updater(token=TELEGRAM_BOT_API_KEY, use_context=True)
139
+ dispatcher = updater.dispatcher
140
+
141
+ start_handler = CommandHandler('start', start)
142
+ signal_handler = CommandHandler('signal', signal)
143
+
144
+ dispatcher.add_handler(start_handler)
145
+ dispatcher.add_handler(signal_handler)
146
+
147
+ updater.start_polling()
148
+
149
+ if __name__ == '__main__':
150
+ main()