|
import numpy as np |
|
from tensorflow.keras.models import load_model |
|
from data_loader import load_images_from_folder, create_sequences |
|
|
|
def predict_next_frame(model_path, input_sequence): |
|
model = load_model(model_path) |
|
predictions = model.predict(input_sequence) |
|
return predictions |
|
|
|
if __name__ == "__main__": |
|
folder_path = "/path/to/new/data" |
|
img_size = (200, 200) |
|
sequence_length = 5 |
|
|
|
|
|
dataset = load_images_from_folder(folder_path, img_size=img_size) |
|
dataset = np.expand_dims(dataset, axis=-1) |
|
sequences = create_sequences(dataset, sequence_length) |
|
|
|
|
|
model_path = "best_model.keras" |
|
predictions = predict_next_frame(model_path, sequences) |
|
print("Predictions generated for the input sequence.") |
|
|