VictorSanh
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,97 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
|
5 |
+
Same as https://huggingface.co/HuggingFaceM4/siglip-so400m-14-384-flash-attn2 with two changes:
|
6 |
+
- increase max resolution to 980 x 980 (instead of 384 x 384) by interpolating the position embeddings
|
7 |
+
- implement the strategy in [NaViT](https://arxiv.org/abs/2307.06304) to allow a/ variable resoltion images, b/ aspect ratio preserved images
|
8 |
+
|
9 |
+
These changes only apply to the vision tower. No changes to the text tower.
|
10 |
+
Implementation is fully backward compatible to `https://huggingface.co/HuggingFaceM4/siglip-so400m-14-384-flash-attn2` -> just don't specify the `patch_attention_mask`
|
11 |
+
|
12 |
+
|
13 |
+
Usage:
|
14 |
+
```python
|
15 |
+
import torch
|
16 |
+
from modeling_siglip import SiglipVisionModel
|
17 |
+
|
18 |
+
DEVICE = torch.device("cuda:0")
|
19 |
+
PATCH_SIZE = 14
|
20 |
+
|
21 |
+
pixel_values = torch.randn(2, 3, 28, 42, dtype=torch.bfloat16, device=DEVICE)
|
22 |
+
pixel_attention_mask = [
|
23 |
+
[
|
24 |
+
[1] * 14 + [1] * 14 + [1] * 14,
|
25 |
+
[1] * 14 + [1] * 14 + [1] * 14,
|
26 |
+
[1] * 14 + [1] * 14 + [1] * 14,
|
27 |
+
[1] * 14 + [1] * 14 + [1] * 14,
|
28 |
+
[1] * 14 + [1] * 14 + [1] * 14,
|
29 |
+
[1] * 14 + [1] * 14 + [1] * 14,
|
30 |
+
[1] * 14 + [1] * 14 + [1] * 14,
|
31 |
+
[1] * 14 + [1] * 14 + [1] * 14,
|
32 |
+
[1] * 14 + [1] * 14 + [1] * 14,
|
33 |
+
[1] * 14 + [1] * 14 + [1] * 14,
|
34 |
+
[1] * 14 + [1] * 14 + [1] * 14,
|
35 |
+
[1] * 14 + [1] * 14 + [1] * 14,
|
36 |
+
[1] * 14 + [1] * 14 + [1] * 14,
|
37 |
+
[1] * 14 + [1] * 14 + [1] * 14,
|
38 |
+
|
39 |
+
[0] * 14 + [0] * 14 + [0] * 14,
|
40 |
+
[0] * 14 + [0] * 14 + [0] * 14,
|
41 |
+
[0] * 14 + [0] * 14 + [0] * 14,
|
42 |
+
[0] * 14 + [0] * 14 + [0] * 14,
|
43 |
+
[0] * 14 + [0] * 14 + [0] * 14,
|
44 |
+
[0] * 14 + [0] * 14 + [0] * 14,
|
45 |
+
[0] * 14 + [0] * 14 + [0] * 14,
|
46 |
+
[0] * 14 + [0] * 14 + [0] * 14,
|
47 |
+
[0] * 14 + [0] * 14 + [0] * 14,
|
48 |
+
[0] * 14 + [0] * 14 + [0] * 14,
|
49 |
+
[0] * 14 + [0] * 14 + [0] * 14,
|
50 |
+
[0] * 14 + [0] * 14 + [0] * 14,
|
51 |
+
[0] * 14 + [0] * 14 + [0] * 14,
|
52 |
+
[0] * 14 + [0] * 14 + [0] * 14,
|
53 |
+
],
|
54 |
+
[
|
55 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
56 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
57 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
58 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
59 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
60 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
61 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
62 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
63 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
64 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
65 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
66 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
67 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
68 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
69 |
+
|
70 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
71 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
72 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
73 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
74 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
75 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
76 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
77 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
78 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
79 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
80 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
81 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
82 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
83 |
+
[1] * 14 + [1] * 14 + [0] * 14,
|
84 |
+
],
|
85 |
+
]
|
86 |
+
pixel_attention_mask = torch.tensor(pixel_attention_mask, dtype=torch.bool, device=DEVICE)
|
87 |
+
patches_subgrid = pixel_attention_mask.unfold(
|
88 |
+
dimension=1, size=PATCH_SIZE, step=PATCH_SIZE
|
89 |
+
).unfold(dimension=2, size=PATCH_SIZE, step=PATCH_SIZE)
|
90 |
+
patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
|
91 |
+
|
92 |
+
model = SiglipVisionModel.from_pretrained("HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit", _flash_attn_2_enabled=True)
|
93 |
+
model.train()
|
94 |
+
model.vision_model.to(DEVICE, dtype=torch.bfloat16)
|
95 |
+
|
96 |
+
output = model.vision_model(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask)
|
97 |
+
```
|