merve HF staff commited on
Commit
7e0fdcf
·
verified ·
1 Parent(s): bc636e4

Misc improvements

Browse files

- Add dataset
- Add license
- Add task tag
- Some formatting nits
- Add quant code

Later todo: link to base model

Files changed (1) hide show
  1. README.md +30 -14
README.md CHANGED
@@ -1,14 +1,16 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
  SmolVLM is a compact open multimodal model that accepts arbitrary sequences of image and text inputs to produce text outputs. Designed for efficiency, SmolVLM can answer questions about images, describe visual content, create stories grounded on multiple images, or function as a pure language model without visual inputs. Its lightweight architecture makes it suitable for on-device applications while maintaining strong performance on multimodal tasks.
9
 
10
- We release the checkpoints under the Apache 2.0 license.
11
-
12
  ## Model Details
13
 
14
  ### Model Description
@@ -28,7 +30,7 @@ This is the model card of a 🤗 transformers model that has been pushed on the
28
 
29
  - **Repository:** [More Information Needed]
30
  - **Paper [optional]:** [More Information Needed]
31
- - **Demo [optional]:** https://huggingface.co/spaces/HuggingFaceTB/SmolVLM
32
 
33
  ## Uses
34
 
@@ -40,14 +42,16 @@ To fine-tune SmolVLM on a specific task, you can follow the fine-tuning tutorial
40
 
41
  SmolVLM leverages the lightweight SmolLM2 language model to provide a compact yet powerful multimodal experience. It introduces several changes compared to previous models:
42
 
43
- - Image compression: We introduce a more radical image compression compared to Idefics3 to enable the model to infer faster and use less RAM.
44
- - Visual Token Encoding: It uses 81 visual tokens to encode image patches of size 384*384. Larger images are divided into patches, each encoded separately, enhancing efficiency without compromising performance.
45
 
46
  More details about the training and architecture are available in our technical report.
47
 
48
 
49
  ### How to get started
50
 
 
 
51
  ```python
52
  import torch
53
  from PIL import Image
@@ -108,13 +112,29 @@ print(generated_texts[0])
108
  **Precision**: For better performance, load and run the model in half-precision (`torch.float16` or `torch.bfloat16`) if your hardware supports it.
109
 
110
  ```python
 
 
 
111
  model = AutoModelForVision2Seq.from_pretrained(
112
  "HuggingFaceTB/SmolVLM-Instruct",
113
  torch_dtype=torch.bfloat16
114
- ).to(DEVICE)
 
 
 
 
 
 
 
 
 
 
 
 
 
115
  ```
116
 
117
- **Vision Encoder Efficiency**: Adjust the image resolution by setting size={"longest_edge": N*384} when initializing the processor, where N is your desired value. The default N=4 works well, but for documents, N=5 might be beneficial. Decreasing N can save GPU memory for lower-resolution images. This is also useful if you want to fine-tune on videos.
118
 
119
 
120
  ## Misuse and Out-of-scope Use
@@ -133,10 +153,7 @@ SmolVLM is not intended for high-stakes scenarios or critical decision-making pr
133
 
134
  ### License
135
 
136
- SmolVLM is built upon the following pre-trained models:
137
-
138
- https://huggingface.co/google/siglip-so400m-patch14-384
139
- https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct
140
 
141
  We release the SmolVLM checkpoints under the Apache 2.0 license.
142
 
@@ -155,5 +172,4 @@ TODO
155
 
156
  ## Evaluation
157
 
158
- TODO
159
-
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ datasets:
5
+ - HuggingFaceM4/the_cauldron
6
+ - HuggingFaceM4/Docmatix
7
+ pipeline_tag: image-text-to-text
8
  ---
9
 
10
  # Model Card for Model ID
11
 
12
  SmolVLM is a compact open multimodal model that accepts arbitrary sequences of image and text inputs to produce text outputs. Designed for efficiency, SmolVLM can answer questions about images, describe visual content, create stories grounded on multiple images, or function as a pure language model without visual inputs. Its lightweight architecture makes it suitable for on-device applications while maintaining strong performance on multimodal tasks.
13
 
 
 
14
  ## Model Details
15
 
16
  ### Model Description
 
30
 
31
  - **Repository:** [More Information Needed]
32
  - **Paper [optional]:** [More Information Needed]
33
+ - **Demo:** [SmolVLM Demo](https://huggingface.co/spaces/HuggingFaceTB/SmolVLM)
34
 
35
  ## Uses
36
 
 
42
 
43
  SmolVLM leverages the lightweight SmolLM2 language model to provide a compact yet powerful multimodal experience. It introduces several changes compared to previous models:
44
 
45
+ - **Image compression:** We introduce a more radical image compression compared to Idefics3 to enable the model to infer faster and use less RAM.
46
+ - **Visual Token Encoding:** It uses 81 visual tokens to encode image patches of size 384*384. Larger images are divided into patches, each encoded separately, enhancing efficiency without compromising performance.
47
 
48
  More details about the training and architecture are available in our technical report.
49
 
50
 
51
  ### How to get started
52
 
53
+ You can use transformers to load, infer and fine-tune SmolVLM.
54
+
55
  ```python
56
  import torch
57
  from PIL import Image
 
112
  **Precision**: For better performance, load and run the model in half-precision (`torch.float16` or `torch.bfloat16`) if your hardware supports it.
113
 
114
  ```python
115
+ from transformers import AutoModelForVision2Seq
116
+ import torch
117
+
118
  model = AutoModelForVision2Seq.from_pretrained(
119
  "HuggingFaceTB/SmolVLM-Instruct",
120
  torch_dtype=torch.bfloat16
121
+ ).to("cuda")
122
+ ```
123
+
124
+ You can also load SmolVLM with 4/8-bit quantization using bitsandbytes, torchao or Quanto. Refer to [this page](https://huggingface.co/docs/transformers/en/main_classes/quantization) for other options.
125
+
126
+ ```python
127
+ from transformers import AutoModelForVision2Seq, BitsAndBytesConfig
128
+ import torch
129
+
130
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
131
+ model = AutoModelForVision2Seq.from_pretrained(
132
+ "HuggingFaceTB/SmolVLM-Instruct",
133
+ quantization_config=quantization_config
134
+ )
135
  ```
136
 
137
+ **Vision Encoder Efficiency**: Adjust the image resolution by setting `size={"longest_edge": N*384}` when initializing the processor, where N is your desired value. The default `N=4` works well, but for documents, `N=5` might be beneficial. Decreasing N can save GPU memory for lower-resolution images. This is also useful if you want to fine-tune on videos.
138
 
139
 
140
  ## Misuse and Out-of-scope Use
 
153
 
154
  ### License
155
 
156
+ SmolVLM is built upon [the shape-optimized SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384) as image encoder and [SmolLM2](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct) for text decoder part.
 
 
 
157
 
158
  We release the SmolVLM checkpoints under the Apache 2.0 license.
159
 
 
172
 
173
  ## Evaluation
174
 
175
+ TODO