File size: 8,538 Bytes
c2b08c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
library_name: transformers
license: mit
base_model: intfloat/multilingual-e5-small
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: owm-math-scorer-multilingual-e5-small
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# owm-math-scorer-multilingual-e5-small

This model is a fine-tuned version of [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4478
- Precision: 0.8771
- Recall: 0.8769
- F1 Macro: 0.8770
- Accuracy: 0.8770

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 256
- eval_batch_size: 128
- seed: 0
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 1024
- total_eval_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Precision | Recall | F1 Macro | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:--------:|:--------:|
| No log        | 0       | 0     | 8.2909          | 0.2546    | 0.5    | 0.3374   | 0.5091   |
| 0.5633        | 0.2844  | 250   | 0.5661          | 0.8608    | 0.8596 | 0.8588   | 0.8589   |
| 0.5443        | 0.5688  | 500   | 0.5192          | 0.8655    | 0.8652 | 0.8653   | 0.8654   |
| 0.5395        | 0.8532  | 750   | 0.5461          | 0.8651    | 0.8636 | 0.8628   | 0.8629   |
| 0.5144        | 1.1377  | 1000  | 0.4992          | 0.8691    | 0.8692 | 0.8691   | 0.8691   |
| 0.5278        | 1.4221  | 1250  | 0.5322          | 0.8675    | 0.8613 | 0.8616   | 0.8624   |
| 0.501         | 1.7065  | 1500  | 0.4942          | 0.8708    | 0.8690 | 0.8692   | 0.8695   |
| 0.4942        | 1.9909  | 1750  | 0.4934          | 0.8697    | 0.8696 | 0.8693   | 0.8693   |
| 0.492         | 2.2753  | 2000  | 0.4873          | 0.8710    | 0.8711 | 0.8711   | 0.8711   |
| 0.4984        | 2.5597  | 2250  | 0.5061          | 0.8701    | 0.8694 | 0.8688   | 0.8688   |
| 0.4809        | 2.8441  | 2500  | 0.4995          | 0.8719    | 0.8673 | 0.8677   | 0.8682   |
| 0.4744        | 3.1286  | 2750  | 0.4783          | 0.8721    | 0.8722 | 0.8721   | 0.8721   |
| 0.4817        | 3.4130  | 3000  | 0.4715          | 0.8737    | 0.8738 | 0.8738   | 0.8738   |
| 0.4748        | 3.6974  | 3250  | 0.4734          | 0.8743    | 0.8725 | 0.8728   | 0.8731   |
| 0.4725        | 3.9818  | 3500  | 0.4703          | 0.8738    | 0.8736 | 0.8737   | 0.8738   |
| 0.4684        | 4.2662  | 3750  | 0.4693          | 0.8739    | 0.8734 | 0.8735   | 0.8737   |
| 0.4796        | 4.5506  | 4000  | 0.4697          | 0.8746    | 0.8727 | 0.8729   | 0.8732   |
| 0.4666        | 4.8350  | 4250  | 0.4715          | 0.8737    | 0.8738 | 0.8735   | 0.8735   |
| 0.4697        | 5.1195  | 4500  | 0.4853          | 0.8736    | 0.8692 | 0.8695   | 0.8700   |
| 0.466         | 5.4039  | 4750  | 0.4782          | 0.8734    | 0.8713 | 0.8716   | 0.8719   |
| 0.4663        | 5.6883  | 5000  | 0.4653          | 0.8746    | 0.8747 | 0.8746   | 0.8746   |
| 0.4677        | 5.9727  | 5250  | 0.4656          | 0.8749    | 0.8734 | 0.8737   | 0.8739   |
| 0.4615        | 6.2571  | 5500  | 0.4631          | 0.8753    | 0.8739 | 0.8741   | 0.8743   |
| 0.4689        | 6.5415  | 5750  | 0.4610          | 0.8759    | 0.8754 | 0.8756   | 0.8757   |
| 0.4643        | 6.8259  | 6000  | 0.4601          | 0.8753    | 0.8747 | 0.8749   | 0.8750   |
| 0.4591        | 7.1104  | 6250  | 0.4598          | 0.8748    | 0.8745 | 0.8746   | 0.8747   |
| 0.4628        | 7.3948  | 6500  | 0.4592          | 0.8759    | 0.8749 | 0.8751   | 0.8753   |
| 0.4589        | 7.6792  | 6750  | 0.4613          | 0.8759    | 0.8744 | 0.8747   | 0.8749   |
| 0.4626        | 7.9636  | 7000  | 0.4566          | 0.8758    | 0.8753 | 0.8754   | 0.8756   |
| 0.4632        | 8.2480  | 7250  | 0.4623          | 0.8746    | 0.8727 | 0.8730   | 0.8732   |
| 0.4545        | 8.5324  | 7500  | 0.4554          | 0.8766    | 0.8759 | 0.8760   | 0.8762   |
| 0.4596        | 8.8168  | 7750  | 0.4581          | 0.8755    | 0.8755 | 0.8755   | 0.8755   |
| 0.4571        | 9.1013  | 8000  | 0.4595          | 0.8759    | 0.8737 | 0.8740   | 0.8743   |
| 0.4585        | 9.3857  | 8250  | 0.4561          | 0.8760    | 0.8750 | 0.8752   | 0.8754   |
| 0.4541        | 9.6701  | 8500  | 0.4548          | 0.8756    | 0.8750 | 0.8751   | 0.8752   |
| 0.4576        | 9.9545  | 8750  | 0.4541          | 0.8757    | 0.8754 | 0.8755   | 0.8756   |
| 0.449         | 10.2389 | 9000  | 0.4554          | 0.8754    | 0.8752 | 0.8752   | 0.8753   |
| 0.4507        | 10.5233 | 9250  | 0.4535          | 0.8763    | 0.8763 | 0.8763   | 0.8763   |
| 0.4545        | 10.8077 | 9500  | 0.4543          | 0.8759    | 0.8758 | 0.8758   | 0.8759   |
| 0.4462        | 11.0922 | 9750  | 0.4529          | 0.8764    | 0.8756 | 0.8758   | 0.8759   |
| 0.4505        | 11.3766 | 10000 | 0.4538          | 0.8762    | 0.8751 | 0.8753   | 0.8755   |
| 0.4576        | 11.6610 | 10250 | 0.4714          | 0.8751    | 0.8714 | 0.8717   | 0.8722   |
| 0.4509        | 11.9454 | 10500 | 0.4613          | 0.8759    | 0.8760 | 0.8758   | 0.8758   |
| 0.4557        | 12.2298 | 10750 | 0.4538          | 0.8764    | 0.8753 | 0.8755   | 0.8757   |
| 0.4539        | 12.5142 | 11000 | 0.4523          | 0.8765    | 0.8758 | 0.8760   | 0.8761   |
| 0.4534        | 12.7986 | 11250 | 0.4515          | 0.8766    | 0.8767 | 0.8766   | 0.8767   |
| 0.4532        | 13.0830 | 11500 | 0.4509          | 0.8768    | 0.8763 | 0.8765   | 0.8766   |
| 0.4501        | 13.3675 | 11750 | 0.4517          | 0.8765    | 0.8762 | 0.8763   | 0.8763   |
| 0.4493        | 13.6519 | 12000 | 0.4527          | 0.8767    | 0.8768 | 0.8768   | 0.8768   |
| 0.4528        | 13.9363 | 12250 | 0.4499          | 0.8766    | 0.8765 | 0.8765   | 0.8766   |
| 0.4491        | 14.2207 | 12500 | 0.4519          | 0.8766    | 0.8755 | 0.8757   | 0.8759   |
| 0.4495        | 14.5051 | 12750 | 0.4594          | 0.8768    | 0.8769 | 0.8767   | 0.8767   |
| 0.4443        | 14.7895 | 13000 | 0.4519          | 0.8766    | 0.8764 | 0.8765   | 0.8766   |
| 0.4476        | 15.0739 | 13250 | 0.4509          | 0.8769    | 0.8766 | 0.8767   | 0.8768   |
| 0.4466        | 15.3584 | 13500 | 0.4494          | 0.8773    | 0.8769 | 0.8770   | 0.8771   |
| 0.4456        | 15.6428 | 13750 | 0.4489          | 0.8768    | 0.8765 | 0.8766   | 0.8767   |
| 0.4447        | 15.9272 | 14000 | 0.4552          | 0.8765    | 0.8751 | 0.8754   | 0.8756   |
| 0.4471        | 16.2116 | 14250 | 0.4520          | 0.8763    | 0.8763 | 0.8763   | 0.8763   |
| 0.4521        | 16.4960 | 14500 | 0.4509          | 0.8770    | 0.8756 | 0.8758   | 0.8760   |
| 0.4419        | 16.7804 | 14750 | 0.4533          | 0.8767    | 0.8768 | 0.8767   | 0.8768   |
| 0.4485        | 17.0648 | 15000 | 0.4483          | 0.8770    | 0.8768 | 0.8769   | 0.8769   |
| 0.4424        | 17.3493 | 15250 | 0.4490          | 0.8770    | 0.8769 | 0.8769   | 0.8770   |
| 0.4441        | 17.6337 | 15500 | 0.4502          | 0.8770    | 0.8769 | 0.8770   | 0.8770   |
| 0.4487        | 17.9181 | 15750 | 0.4480          | 0.8769    | 0.8763 | 0.8765   | 0.8766   |
| 0.4487        | 18.2025 | 16000 | 0.4500          | 0.8771    | 0.8772 | 0.8772   | 0.8772   |
| 0.4375        | 18.4869 | 16250 | 0.4483          | 0.8769    | 0.8766 | 0.8767   | 0.8768   |
| 0.4491        | 18.7713 | 16500 | 0.4515          | 0.8768    | 0.8769 | 0.8768   | 0.8768   |
| 0.4433        | 19.0557 | 16750 | 0.4477          | 0.8773    | 0.8769 | 0.8770   | 0.8771   |
| 0.4432        | 19.3402 | 17000 | 0.4480          | 0.8771    | 0.8769 | 0.8770   | 0.8771   |
| 0.442         | 19.6246 | 17250 | 0.4480          | 0.8770    | 0.8768 | 0.8769   | 0.8770   |
| 0.4407        | 19.9090 | 17500 | 0.4478          | 0.8771    | 0.8769 | 0.8770   | 0.8770   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1