Huhujingjing commited on
Commit
40fcca6
·
1 Parent(s): aea6f73

Upload model

Browse files
Files changed (4) hide show
  1. config.json +17 -0
  2. configuration_gcn.py +27 -0
  3. modeling_gcn.py +103 -0
  4. pytorch_model.bin +3 -0
config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "GCNModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_gcn.GCNConfig",
7
+ "AutoModel": "modeling_gcn.GCNModel"
8
+ },
9
+ "emb_input": 20,
10
+ "hidden_size": 64,
11
+ "input_feature": 64,
12
+ "model_type": "gcn",
13
+ "n_layers": 6,
14
+ "num_classes": 1,
15
+ "torch_dtype": "float32",
16
+ "transformers_version": "4.29.2"
17
+ }
configuration_gcn.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+ class GCNConfig(PretrainedConfig):
4
+ model_type = "gcn"
5
+
6
+ def __init__(
7
+ self,
8
+ input_feature: int=64,
9
+ emb_input: int=20,
10
+ hidden_size: int=64,
11
+ n_layers: int=6,
12
+ num_classes: int=1,
13
+ **kwargs,
14
+ ):
15
+
16
+ self.input_feature = input_feature # the dimension of input feature
17
+ self.emb_input = emb_input # the embedding dimension of input feature
18
+ self.hidden_size = hidden_size # the hidden size of GCN
19
+ self.n_layers = n_layers # the number of GCN layers
20
+ self.num_classes = num_classes # the number of output classes
21
+
22
+ super().__init__(**kwargs)
23
+
24
+
25
+ if __name__ == "__main__":
26
+ gcn_config = GCNConfig(input_feature=64, emb_input=20, hidden_size=64, n_layers=6, num_classes=1)
27
+ gcn_config.save_pretrained("custom-gcn")
modeling_gcn.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch_geometric.nn import GCNConv
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from torch_scatter import scatter
5
+ from transformers import PreTrainedModel
6
+ from gcn_model.configuration_gcn import GCNConfig
7
+ import torch
8
+
9
+
10
+ """
11
+ MLP Layer used after graph vector representation
12
+ """
13
+ class MLPReadout(nn.Module):
14
+
15
+ def __init__(self, input_dim, output_dim, L=2): # L=nb_hidden_layers
16
+ super().__init__()
17
+ list_FC_layers = [nn.Linear(input_dim // 2 ** l, input_dim // 2 ** (l + 1), bias=True) for l in range(L)]
18
+ list_FC_layers.append(nn.Linear(input_dim // 2 ** L, output_dim, bias=True))
19
+ self.FC_layers = nn.ModuleList(list_FC_layers)
20
+ self.L = L
21
+
22
+ def forward(self, x):
23
+ y = x
24
+ for l in range(self.L):
25
+ y = self.FC_layers[l](y)
26
+ y = F.relu(y)
27
+ y = self.FC_layers[self.L](y)
28
+ return y
29
+
30
+ class GCNNet(torch.nn.Module):
31
+ def __init__(self, input_feature=64, emb_input=20, hidden_size=64, n_layers=6, num_classes=1):
32
+ super(GCNNet, self).__init__()
33
+
34
+ self.embedding = torch.nn.Embedding(emb_input, hidden_size, padding_idx=0)
35
+ self.input_feature = input_feature
36
+ self.n_layers = n_layers # 2层GCN
37
+ self.num_classes = num_classes
38
+
39
+ self.conv1 = GCNConv(hidden_size, hidden_size)
40
+
41
+ self.conv2 = GCNConv(hidden_size, 32)
42
+ self.mlp = MLPReadout(32, num_classes)
43
+
44
+ def forward(self, data):
45
+ x, edge_index, batch = data.x.long(), data.edge_index, data.batch
46
+ x = self.embedding(x.reshape(-1))
47
+
48
+ for i in range(self.n_layers):
49
+ x = F.relu(self.conv1(x, edge_index))
50
+
51
+ x = F.relu(self.conv2(x, edge_index))
52
+ x = scatter(x, batch, dim=-2, reduce='mean')
53
+ x = self.mlp(x)
54
+
55
+ return x.sequeeze(-1)
56
+
57
+ class GCNModel(PreTrainedModel):
58
+ config_class = GCNConfig
59
+
60
+ def __init__(self, config):
61
+ super().__init__(config)
62
+
63
+ self.model = GCNNet(
64
+ input_feature=config.input_feature,
65
+ emb_input=config.emb_input,
66
+ hidden_size=config.hidden_size,
67
+ n_layers=config.n_layers,
68
+ num_classes=config.num_classes,
69
+ )
70
+
71
+ def forward(self, tensor):
72
+ return self.model.forward_features(tensor)
73
+
74
+ # class GCNModelForMolecularPrediction(PreTrainedModel):
75
+ # config_class = GCNConfig
76
+ #
77
+ # def __init__(self, config):
78
+ # super().__init__(config)
79
+ #
80
+ # self.model = GCNNet(
81
+ # input_feature=config.input_feature,
82
+ # emb_input=config.emb_input,
83
+ # hidden_size=config.hidden_size,
84
+ # n_layers=config.n_layers,
85
+ # num_classes=config.num_classes,
86
+ # )
87
+ #
88
+ # def forward(self, tensor):
89
+ # return self.model.forward_features(tensor)
90
+
91
+
92
+ if __name__ == "__main__":
93
+ gcn_config = GCNConfig.from_pretrained("custom-gcn")
94
+
95
+ gcnd = GCNModel(gcn_config)
96
+ gcnd.model.load_state_dict(torch.load(r'G:\Trans_MXM\gcn_model\gcn.pt'))
97
+ gcnd.save_pretrained("custom-gcn")
98
+
99
+ # gcnd1 = GCNModelForMolecularPrediction(gcn_config)
100
+ #
101
+ # gcnd1.model.load_state_dict(torch.load(r'G:\Trans_MXM\gcn_model\gcn.pt'))
102
+ # gcnd1.save_pretrained("custom-gcn")
103
+
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b49c62eec2f337c8c36abe60088848da35409fd74ea35e0027f316ec92c1cc4f
3
+ size 35716