prateeky2806's picture
Training in progress, step 2400
bc9d70a
raw
history blame
73.5 kB
{
"best_metric": 0.46646037697792053,
"best_model_checkpoint": "./output_v2/7b_cluster026_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_026/checkpoint-1800",
"epoch": 2.5296442687747036,
"global_step": 2400,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.723,
"step": 10
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.6175,
"step": 20
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.5857,
"step": 30
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.573,
"step": 40
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.5669,
"step": 50
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.5417,
"step": 60
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.5666,
"step": 70
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.6158,
"step": 80
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.5122,
"step": 90
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.5559,
"step": 100
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.5341,
"step": 110
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.5098,
"step": 120
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.5355,
"step": 130
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.4967,
"step": 140
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.5619,
"step": 150
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.5401,
"step": 160
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.4559,
"step": 170
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.5469,
"step": 180
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.4936,
"step": 190
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.5205,
"step": 200
},
{
"epoch": 0.21,
"eval_loss": 0.526250958442688,
"eval_runtime": 127.7705,
"eval_samples_per_second": 7.827,
"eval_steps_per_second": 3.913,
"step": 200
},
{
"epoch": 0.21,
"mmlu_eval_accuracy": 0.4451746082548338,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.18181818181818182,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.39473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.5151515151515151,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.4,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3235294117647059,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.37681159420289856,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.1821206606554924,
"step": 200
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.528,
"step": 210
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.5451,
"step": 220
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.4991,
"step": 230
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.5335,
"step": 240
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 0.552,
"step": 250
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.5038,
"step": 260
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.4999,
"step": 270
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.498,
"step": 280
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.5372,
"step": 290
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.5633,
"step": 300
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.555,
"step": 310
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 0.5152,
"step": 320
},
{
"epoch": 0.35,
"learning_rate": 0.0002,
"loss": 0.4703,
"step": 330
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 0.4987,
"step": 340
},
{
"epoch": 0.37,
"learning_rate": 0.0002,
"loss": 0.5223,
"step": 350
},
{
"epoch": 0.38,
"learning_rate": 0.0002,
"loss": 0.508,
"step": 360
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.5035,
"step": 370
},
{
"epoch": 0.4,
"learning_rate": 0.0002,
"loss": 0.4861,
"step": 380
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.5071,
"step": 390
},
{
"epoch": 0.42,
"learning_rate": 0.0002,
"loss": 0.5253,
"step": 400
},
{
"epoch": 0.42,
"eval_loss": 0.5059861540794373,
"eval_runtime": 162.7698,
"eval_samples_per_second": 6.144,
"eval_steps_per_second": 3.072,
"step": 400
},
{
"epoch": 0.42,
"mmlu_eval_accuracy": 0.43943772184310154,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.18181818181818182,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.25,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.3,
"mmlu_eval_accuracy_high_school_biology": 0.28125,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.65,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.4230769230769231,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.39473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5151515151515151,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.5,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.0068739111834344,
"step": 400
},
{
"epoch": 0.43,
"learning_rate": 0.0002,
"loss": 0.5145,
"step": 410
},
{
"epoch": 0.44,
"learning_rate": 0.0002,
"loss": 0.4798,
"step": 420
},
{
"epoch": 0.45,
"learning_rate": 0.0002,
"loss": 0.4728,
"step": 430
},
{
"epoch": 0.46,
"learning_rate": 0.0002,
"loss": 0.5151,
"step": 440
},
{
"epoch": 0.47,
"learning_rate": 0.0002,
"loss": 0.4784,
"step": 450
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 0.5029,
"step": 460
},
{
"epoch": 0.5,
"learning_rate": 0.0002,
"loss": 0.4603,
"step": 470
},
{
"epoch": 0.51,
"learning_rate": 0.0002,
"loss": 0.5177,
"step": 480
},
{
"epoch": 0.52,
"learning_rate": 0.0002,
"loss": 0.4676,
"step": 490
},
{
"epoch": 0.53,
"learning_rate": 0.0002,
"loss": 0.4294,
"step": 500
},
{
"epoch": 0.54,
"learning_rate": 0.0002,
"loss": 0.4927,
"step": 510
},
{
"epoch": 0.55,
"learning_rate": 0.0002,
"loss": 0.509,
"step": 520
},
{
"epoch": 0.56,
"learning_rate": 0.0002,
"loss": 0.4763,
"step": 530
},
{
"epoch": 0.57,
"learning_rate": 0.0002,
"loss": 0.499,
"step": 540
},
{
"epoch": 0.58,
"learning_rate": 0.0002,
"loss": 0.4936,
"step": 550
},
{
"epoch": 0.59,
"learning_rate": 0.0002,
"loss": 0.5154,
"step": 560
},
{
"epoch": 0.6,
"learning_rate": 0.0002,
"loss": 0.5185,
"step": 570
},
{
"epoch": 0.61,
"learning_rate": 0.0002,
"loss": 0.4692,
"step": 580
},
{
"epoch": 0.62,
"learning_rate": 0.0002,
"loss": 0.4859,
"step": 590
},
{
"epoch": 0.63,
"learning_rate": 0.0002,
"loss": 0.4755,
"step": 600
},
{
"epoch": 0.63,
"eval_loss": 0.4953967332839966,
"eval_runtime": 127.6509,
"eval_samples_per_second": 7.834,
"eval_steps_per_second": 3.917,
"step": 600
},
{
"epoch": 0.63,
"mmlu_eval_accuracy": 0.44296636130010114,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.2727272727272727,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.45454545454545453,
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.3,
"mmlu_eval_accuracy_high_school_biology": 0.28125,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.4230769230769231,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6395348837209303,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.25,
"mmlu_eval_accuracy_nutrition": 0.48484848484848486,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.34705882352941175,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.5,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 0.979445159590898,
"step": 600
},
{
"epoch": 0.64,
"learning_rate": 0.0002,
"loss": 0.4985,
"step": 610
},
{
"epoch": 0.65,
"learning_rate": 0.0002,
"loss": 0.4798,
"step": 620
},
{
"epoch": 0.66,
"learning_rate": 0.0002,
"loss": 0.4372,
"step": 630
},
{
"epoch": 0.67,
"learning_rate": 0.0002,
"loss": 0.459,
"step": 640
},
{
"epoch": 0.69,
"learning_rate": 0.0002,
"loss": 0.4566,
"step": 650
},
{
"epoch": 0.7,
"learning_rate": 0.0002,
"loss": 0.5171,
"step": 660
},
{
"epoch": 0.71,
"learning_rate": 0.0002,
"loss": 0.4919,
"step": 670
},
{
"epoch": 0.72,
"learning_rate": 0.0002,
"loss": 0.4854,
"step": 680
},
{
"epoch": 0.73,
"learning_rate": 0.0002,
"loss": 0.4689,
"step": 690
},
{
"epoch": 0.74,
"learning_rate": 0.0002,
"loss": 0.4785,
"step": 700
},
{
"epoch": 0.75,
"learning_rate": 0.0002,
"loss": 0.5183,
"step": 710
},
{
"epoch": 0.76,
"learning_rate": 0.0002,
"loss": 0.4489,
"step": 720
},
{
"epoch": 0.77,
"learning_rate": 0.0002,
"loss": 0.4942,
"step": 730
},
{
"epoch": 0.78,
"learning_rate": 0.0002,
"loss": 0.489,
"step": 740
},
{
"epoch": 0.79,
"learning_rate": 0.0002,
"loss": 0.4945,
"step": 750
},
{
"epoch": 0.8,
"learning_rate": 0.0002,
"loss": 0.5139,
"step": 760
},
{
"epoch": 0.81,
"learning_rate": 0.0002,
"loss": 0.4682,
"step": 770
},
{
"epoch": 0.82,
"learning_rate": 0.0002,
"loss": 0.4612,
"step": 780
},
{
"epoch": 0.83,
"learning_rate": 0.0002,
"loss": 0.4696,
"step": 790
},
{
"epoch": 0.84,
"learning_rate": 0.0002,
"loss": 0.4923,
"step": 800
},
{
"epoch": 0.84,
"eval_loss": 0.4819973409175873,
"eval_runtime": 127.6992,
"eval_samples_per_second": 7.831,
"eval_steps_per_second": 3.915,
"step": 800
},
{
"epoch": 0.84,
"mmlu_eval_accuracy": 0.4402060582075684,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.3,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.3793103448275862,
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6395348837209303,
"mmlu_eval_accuracy_moral_disputes": 0.3684210526315789,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5151515151515151,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.4,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.34705882352941175,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.36231884057971014,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.4444444444444444,
"mmlu_eval_accuracy_sociology": 0.5454545454545454,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.981959992635499,
"step": 800
},
{
"epoch": 0.85,
"learning_rate": 0.0002,
"loss": 0.4769,
"step": 810
},
{
"epoch": 0.86,
"learning_rate": 0.0002,
"loss": 0.4918,
"step": 820
},
{
"epoch": 0.87,
"learning_rate": 0.0002,
"loss": 0.456,
"step": 830
},
{
"epoch": 0.89,
"learning_rate": 0.0002,
"loss": 0.4702,
"step": 840
},
{
"epoch": 0.9,
"learning_rate": 0.0002,
"loss": 0.4577,
"step": 850
},
{
"epoch": 0.91,
"learning_rate": 0.0002,
"loss": 0.519,
"step": 860
},
{
"epoch": 0.92,
"learning_rate": 0.0002,
"loss": 0.5301,
"step": 870
},
{
"epoch": 0.93,
"learning_rate": 0.0002,
"loss": 0.4637,
"step": 880
},
{
"epoch": 0.94,
"learning_rate": 0.0002,
"loss": 0.4931,
"step": 890
},
{
"epoch": 0.95,
"learning_rate": 0.0002,
"loss": 0.5277,
"step": 900
},
{
"epoch": 0.96,
"learning_rate": 0.0002,
"loss": 0.5159,
"step": 910
},
{
"epoch": 0.97,
"learning_rate": 0.0002,
"loss": 0.4564,
"step": 920
},
{
"epoch": 0.98,
"learning_rate": 0.0002,
"loss": 0.4429,
"step": 930
},
{
"epoch": 0.99,
"learning_rate": 0.0002,
"loss": 0.4922,
"step": 940
},
{
"epoch": 1.0,
"learning_rate": 0.0002,
"loss": 0.4927,
"step": 950
},
{
"epoch": 1.01,
"learning_rate": 0.0002,
"loss": 0.4057,
"step": 960
},
{
"epoch": 1.02,
"learning_rate": 0.0002,
"loss": 0.4264,
"step": 970
},
{
"epoch": 1.03,
"learning_rate": 0.0002,
"loss": 0.4433,
"step": 980
},
{
"epoch": 1.04,
"learning_rate": 0.0002,
"loss": 0.4324,
"step": 990
},
{
"epoch": 1.05,
"learning_rate": 0.0002,
"loss": 0.4029,
"step": 1000
},
{
"epoch": 1.05,
"eval_loss": 0.4791600704193115,
"eval_runtime": 127.7358,
"eval_samples_per_second": 7.829,
"eval_steps_per_second": 3.914,
"step": 1000
},
{
"epoch": 1.05,
"mmlu_eval_accuracy": 0.46467180515245,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.25,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.5142857142857142,
"mmlu_eval_accuracy_professional_accounting": 0.3548387096774194,
"mmlu_eval_accuracy_professional_law": 0.3588235294117647,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.5454545454545454,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.9341255869356522,
"step": 1000
},
{
"epoch": 1.06,
"learning_rate": 0.0002,
"loss": 0.4331,
"step": 1010
},
{
"epoch": 1.08,
"learning_rate": 0.0002,
"loss": 0.3946,
"step": 1020
},
{
"epoch": 1.09,
"learning_rate": 0.0002,
"loss": 0.4069,
"step": 1030
},
{
"epoch": 1.1,
"learning_rate": 0.0002,
"loss": 0.429,
"step": 1040
},
{
"epoch": 1.11,
"learning_rate": 0.0002,
"loss": 0.4117,
"step": 1050
},
{
"epoch": 1.12,
"learning_rate": 0.0002,
"loss": 0.4538,
"step": 1060
},
{
"epoch": 1.13,
"learning_rate": 0.0002,
"loss": 0.4346,
"step": 1070
},
{
"epoch": 1.14,
"learning_rate": 0.0002,
"loss": 0.4236,
"step": 1080
},
{
"epoch": 1.15,
"learning_rate": 0.0002,
"loss": 0.3701,
"step": 1090
},
{
"epoch": 1.16,
"learning_rate": 0.0002,
"loss": 0.4249,
"step": 1100
},
{
"epoch": 1.17,
"learning_rate": 0.0002,
"loss": 0.4294,
"step": 1110
},
{
"epoch": 1.18,
"learning_rate": 0.0002,
"loss": 0.4398,
"step": 1120
},
{
"epoch": 1.19,
"learning_rate": 0.0002,
"loss": 0.398,
"step": 1130
},
{
"epoch": 1.2,
"learning_rate": 0.0002,
"loss": 0.427,
"step": 1140
},
{
"epoch": 1.21,
"learning_rate": 0.0002,
"loss": 0.4197,
"step": 1150
},
{
"epoch": 1.22,
"learning_rate": 0.0002,
"loss": 0.4655,
"step": 1160
},
{
"epoch": 1.23,
"learning_rate": 0.0002,
"loss": 0.4174,
"step": 1170
},
{
"epoch": 1.24,
"learning_rate": 0.0002,
"loss": 0.4223,
"step": 1180
},
{
"epoch": 1.25,
"learning_rate": 0.0002,
"loss": 0.4378,
"step": 1190
},
{
"epoch": 1.26,
"learning_rate": 0.0002,
"loss": 0.3724,
"step": 1200
},
{
"epoch": 1.26,
"eval_loss": 0.4776886999607086,
"eval_runtime": 127.679,
"eval_samples_per_second": 7.832,
"eval_steps_per_second": 3.916,
"step": 1200
},
{
"epoch": 1.26,
"mmlu_eval_accuracy": 0.4717994530523758,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.6363636363636364,
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156,
"mmlu_eval_accuracy_econometrics": 0.3333333333333333,
"mmlu_eval_accuracy_electrical_engineering": 0.25,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.4375,
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.7142857142857143,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.42105263157894735,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.5428571428571428,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.37058823529411766,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.37681159420289856,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.9070262031692905,
"step": 1200
},
{
"epoch": 1.28,
"learning_rate": 0.0002,
"loss": 0.4317,
"step": 1210
},
{
"epoch": 1.29,
"learning_rate": 0.0002,
"loss": 0.4319,
"step": 1220
},
{
"epoch": 1.3,
"learning_rate": 0.0002,
"loss": 0.4566,
"step": 1230
},
{
"epoch": 1.31,
"learning_rate": 0.0002,
"loss": 0.3992,
"step": 1240
},
{
"epoch": 1.32,
"learning_rate": 0.0002,
"loss": 0.4075,
"step": 1250
},
{
"epoch": 1.33,
"learning_rate": 0.0002,
"loss": 0.4039,
"step": 1260
},
{
"epoch": 1.34,
"learning_rate": 0.0002,
"loss": 0.4038,
"step": 1270
},
{
"epoch": 1.35,
"learning_rate": 0.0002,
"loss": 0.382,
"step": 1280
},
{
"epoch": 1.36,
"learning_rate": 0.0002,
"loss": 0.4022,
"step": 1290
},
{
"epoch": 1.37,
"learning_rate": 0.0002,
"loss": 0.4489,
"step": 1300
},
{
"epoch": 1.38,
"learning_rate": 0.0002,
"loss": 0.3975,
"step": 1310
},
{
"epoch": 1.39,
"learning_rate": 0.0002,
"loss": 0.4187,
"step": 1320
},
{
"epoch": 1.4,
"learning_rate": 0.0002,
"loss": 0.3863,
"step": 1330
},
{
"epoch": 1.41,
"learning_rate": 0.0002,
"loss": 0.4457,
"step": 1340
},
{
"epoch": 1.42,
"learning_rate": 0.0002,
"loss": 0.4179,
"step": 1350
},
{
"epoch": 1.43,
"learning_rate": 0.0002,
"loss": 0.4036,
"step": 1360
},
{
"epoch": 1.44,
"learning_rate": 0.0002,
"loss": 0.4167,
"step": 1370
},
{
"epoch": 1.45,
"learning_rate": 0.0002,
"loss": 0.3885,
"step": 1380
},
{
"epoch": 1.47,
"learning_rate": 0.0002,
"loss": 0.3813,
"step": 1390
},
{
"epoch": 1.48,
"learning_rate": 0.0002,
"loss": 0.3902,
"step": 1400
},
{
"epoch": 1.48,
"eval_loss": 0.4798353910446167,
"eval_runtime": 127.8202,
"eval_samples_per_second": 7.823,
"eval_steps_per_second": 3.912,
"step": 1400
},
{
"epoch": 1.48,
"mmlu_eval_accuracy": 0.46940364507316334,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.3125,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.45454545454545453,
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.5384615384615384,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.36363636363636365,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.6363636363636364,
"mmlu_eval_accuracy_miscellaneous": 0.627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903,
"mmlu_eval_accuracy_professional_law": 0.37058823529411766,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.4444444444444444,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.631578947368421,
"mmlu_loss": 1.088950080150257,
"step": 1400
},
{
"epoch": 1.49,
"learning_rate": 0.0002,
"loss": 0.4201,
"step": 1410
},
{
"epoch": 1.5,
"learning_rate": 0.0002,
"loss": 0.4211,
"step": 1420
},
{
"epoch": 1.51,
"learning_rate": 0.0002,
"loss": 0.4487,
"step": 1430
},
{
"epoch": 1.52,
"learning_rate": 0.0002,
"loss": 0.4076,
"step": 1440
},
{
"epoch": 1.53,
"learning_rate": 0.0002,
"loss": 0.4646,
"step": 1450
},
{
"epoch": 1.54,
"learning_rate": 0.0002,
"loss": 0.3904,
"step": 1460
},
{
"epoch": 1.55,
"learning_rate": 0.0002,
"loss": 0.3894,
"step": 1470
},
{
"epoch": 1.56,
"learning_rate": 0.0002,
"loss": 0.4143,
"step": 1480
},
{
"epoch": 1.57,
"learning_rate": 0.0002,
"loss": 0.4265,
"step": 1490
},
{
"epoch": 1.58,
"learning_rate": 0.0002,
"loss": 0.4217,
"step": 1500
},
{
"epoch": 1.59,
"learning_rate": 0.0002,
"loss": 0.4041,
"step": 1510
},
{
"epoch": 1.6,
"learning_rate": 0.0002,
"loss": 0.4113,
"step": 1520
},
{
"epoch": 1.61,
"learning_rate": 0.0002,
"loss": 0.3756,
"step": 1530
},
{
"epoch": 1.62,
"learning_rate": 0.0002,
"loss": 0.4061,
"step": 1540
},
{
"epoch": 1.63,
"learning_rate": 0.0002,
"loss": 0.4214,
"step": 1550
},
{
"epoch": 1.64,
"learning_rate": 0.0002,
"loss": 0.4223,
"step": 1560
},
{
"epoch": 1.65,
"learning_rate": 0.0002,
"loss": 0.3866,
"step": 1570
},
{
"epoch": 1.67,
"learning_rate": 0.0002,
"loss": 0.3955,
"step": 1580
},
{
"epoch": 1.68,
"learning_rate": 0.0002,
"loss": 0.4416,
"step": 1590
},
{
"epoch": 1.69,
"learning_rate": 0.0002,
"loss": 0.3857,
"step": 1600
},
{
"epoch": 1.69,
"eval_loss": 0.4716520607471466,
"eval_runtime": 127.9601,
"eval_samples_per_second": 7.815,
"eval_steps_per_second": 3.907,
"step": 1600
},
{
"epoch": 1.69,
"mmlu_eval_accuracy": 0.46363212751838045,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.45454545454545453,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.25,
"mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.4375,
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.7142857142857143,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395,
"mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6395348837209303,
"mmlu_eval_accuracy_moral_disputes": 0.3684210526315789,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.48484848484848486,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.5142857142857142,
"mmlu_eval_accuracy_professional_accounting": 0.3548387096774194,
"mmlu_eval_accuracy_professional_law": 0.3235294117647059,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.43478260869565216,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.3333333333333333,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 0.9711427107142094,
"step": 1600
},
{
"epoch": 1.7,
"learning_rate": 0.0002,
"loss": 0.4272,
"step": 1610
},
{
"epoch": 1.71,
"learning_rate": 0.0002,
"loss": 0.4018,
"step": 1620
},
{
"epoch": 1.72,
"learning_rate": 0.0002,
"loss": 0.4067,
"step": 1630
},
{
"epoch": 1.73,
"learning_rate": 0.0002,
"loss": 0.4175,
"step": 1640
},
{
"epoch": 1.74,
"learning_rate": 0.0002,
"loss": 0.4142,
"step": 1650
},
{
"epoch": 1.75,
"learning_rate": 0.0002,
"loss": 0.4243,
"step": 1660
},
{
"epoch": 1.76,
"learning_rate": 0.0002,
"loss": 0.4212,
"step": 1670
},
{
"epoch": 1.77,
"learning_rate": 0.0002,
"loss": 0.4222,
"step": 1680
},
{
"epoch": 1.78,
"learning_rate": 0.0002,
"loss": 0.4235,
"step": 1690
},
{
"epoch": 1.79,
"learning_rate": 0.0002,
"loss": 0.3672,
"step": 1700
},
{
"epoch": 1.8,
"learning_rate": 0.0002,
"loss": 0.4058,
"step": 1710
},
{
"epoch": 1.81,
"learning_rate": 0.0002,
"loss": 0.4392,
"step": 1720
},
{
"epoch": 1.82,
"learning_rate": 0.0002,
"loss": 0.3713,
"step": 1730
},
{
"epoch": 1.83,
"learning_rate": 0.0002,
"loss": 0.3819,
"step": 1740
},
{
"epoch": 1.84,
"learning_rate": 0.0002,
"loss": 0.3981,
"step": 1750
},
{
"epoch": 1.86,
"learning_rate": 0.0002,
"loss": 0.3923,
"step": 1760
},
{
"epoch": 1.87,
"learning_rate": 0.0002,
"loss": 0.4212,
"step": 1770
},
{
"epoch": 1.88,
"learning_rate": 0.0002,
"loss": 0.3968,
"step": 1780
},
{
"epoch": 1.89,
"learning_rate": 0.0002,
"loss": 0.3742,
"step": 1790
},
{
"epoch": 1.9,
"learning_rate": 0.0002,
"loss": 0.3945,
"step": 1800
},
{
"epoch": 1.9,
"eval_loss": 0.46646037697792053,
"eval_runtime": 127.7419,
"eval_samples_per_second": 7.828,
"eval_steps_per_second": 3.914,
"step": 1800
},
{
"epoch": 1.9,
"mmlu_eval_accuracy": 0.4542045591160224,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.3125,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488,
"mmlu_eval_accuracy_high_school_mathematics": 0.3448275862068966,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.23529411764705882,
"mmlu_eval_accuracy_high_school_psychology": 0.65,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.18181818181818182,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.3684210526315789,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.48484848484848486,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.31176470588235294,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7894736842105263,
"mmlu_loss": 1.1131818244335856,
"step": 1800
},
{
"epoch": 1.91,
"learning_rate": 0.0002,
"loss": 0.3883,
"step": 1810
},
{
"epoch": 1.92,
"learning_rate": 0.0002,
"loss": 0.3933,
"step": 1820
},
{
"epoch": 1.93,
"learning_rate": 0.0002,
"loss": 0.3901,
"step": 1830
},
{
"epoch": 1.94,
"learning_rate": 0.0002,
"loss": 0.4038,
"step": 1840
},
{
"epoch": 1.95,
"learning_rate": 0.0002,
"loss": 0.4359,
"step": 1850
},
{
"epoch": 1.96,
"learning_rate": 0.0002,
"loss": 0.3962,
"step": 1860
},
{
"epoch": 1.97,
"learning_rate": 0.0002,
"loss": 0.3876,
"step": 1870
},
{
"epoch": 1.98,
"learning_rate": 0.0002,
"loss": 0.3987,
"step": 1880
},
{
"epoch": 1.99,
"learning_rate": 0.0002,
"loss": 0.4021,
"step": 1890
},
{
"epoch": 2.0,
"learning_rate": 0.0002,
"loss": 0.3602,
"step": 1900
},
{
"epoch": 2.01,
"learning_rate": 0.0002,
"loss": 0.3208,
"step": 1910
},
{
"epoch": 2.02,
"learning_rate": 0.0002,
"loss": 0.329,
"step": 1920
},
{
"epoch": 2.03,
"learning_rate": 0.0002,
"loss": 0.333,
"step": 1930
},
{
"epoch": 2.04,
"learning_rate": 0.0002,
"loss": 0.3298,
"step": 1940
},
{
"epoch": 2.06,
"learning_rate": 0.0002,
"loss": 0.3282,
"step": 1950
},
{
"epoch": 2.07,
"learning_rate": 0.0002,
"loss": 0.3286,
"step": 1960
},
{
"epoch": 2.08,
"learning_rate": 0.0002,
"loss": 0.3196,
"step": 1970
},
{
"epoch": 2.09,
"learning_rate": 0.0002,
"loss": 0.3288,
"step": 1980
},
{
"epoch": 2.1,
"learning_rate": 0.0002,
"loss": 0.3138,
"step": 1990
},
{
"epoch": 2.11,
"learning_rate": 0.0002,
"loss": 0.3202,
"step": 2000
},
{
"epoch": 2.11,
"eval_loss": 0.4817604422569275,
"eval_runtime": 127.9381,
"eval_samples_per_second": 7.816,
"eval_steps_per_second": 3.908,
"step": 2000
},
{
"epoch": 2.11,
"mmlu_eval_accuracy": 0.4594927694187698,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.7272727272727273,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.18181818181818182,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.42857142857142855,
"mmlu_eval_accuracy_global_facts": 0.3,
"mmlu_eval_accuracy_high_school_biology": 0.3125,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488,
"mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.34210526315789475,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5151515151515151,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.4,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3235294117647059,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.4074074074074074,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.7894736842105263,
"mmlu_loss": 1.1924852333165337,
"step": 2000
},
{
"epoch": 2.12,
"learning_rate": 0.0002,
"loss": 0.3297,
"step": 2010
},
{
"epoch": 2.13,
"learning_rate": 0.0002,
"loss": 0.3226,
"step": 2020
},
{
"epoch": 2.14,
"learning_rate": 0.0002,
"loss": 0.352,
"step": 2030
},
{
"epoch": 2.15,
"learning_rate": 0.0002,
"loss": 0.3273,
"step": 2040
},
{
"epoch": 2.16,
"learning_rate": 0.0002,
"loss": 0.3301,
"step": 2050
},
{
"epoch": 2.17,
"learning_rate": 0.0002,
"loss": 0.3529,
"step": 2060
},
{
"epoch": 2.18,
"learning_rate": 0.0002,
"loss": 0.3341,
"step": 2070
},
{
"epoch": 2.19,
"learning_rate": 0.0002,
"loss": 0.3239,
"step": 2080
},
{
"epoch": 2.2,
"learning_rate": 0.0002,
"loss": 0.2955,
"step": 2090
},
{
"epoch": 2.21,
"learning_rate": 0.0002,
"loss": 0.3342,
"step": 2100
},
{
"epoch": 2.22,
"learning_rate": 0.0002,
"loss": 0.3348,
"step": 2110
},
{
"epoch": 2.23,
"learning_rate": 0.0002,
"loss": 0.3332,
"step": 2120
},
{
"epoch": 2.25,
"learning_rate": 0.0002,
"loss": 0.3269,
"step": 2130
},
{
"epoch": 2.26,
"learning_rate": 0.0002,
"loss": 0.3588,
"step": 2140
},
{
"epoch": 2.27,
"learning_rate": 0.0002,
"loss": 0.3398,
"step": 2150
},
{
"epoch": 2.28,
"learning_rate": 0.0002,
"loss": 0.3532,
"step": 2160
},
{
"epoch": 2.29,
"learning_rate": 0.0002,
"loss": 0.3121,
"step": 2170
},
{
"epoch": 2.3,
"learning_rate": 0.0002,
"loss": 0.3559,
"step": 2180
},
{
"epoch": 2.31,
"learning_rate": 0.0002,
"loss": 0.3423,
"step": 2190
},
{
"epoch": 2.32,
"learning_rate": 0.0002,
"loss": 0.3504,
"step": 2200
},
{
"epoch": 2.32,
"eval_loss": 0.4891802966594696,
"eval_runtime": 127.9416,
"eval_samples_per_second": 7.816,
"eval_steps_per_second": 3.908,
"step": 2200
},
{
"epoch": 2.32,
"mmlu_eval_accuracy": 0.45339783311312043,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.2727272727272727,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.18181818181818182,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.3,
"mmlu_eval_accuracy_high_school_biology": 0.28125,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.18181818181818182,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.36363636363636365,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.3684210526315789,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5151515151515151,
"mmlu_eval_accuracy_philosophy": 0.5294117647058824,
"mmlu_eval_accuracy_prehistory": 0.4,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.3058823529411765,
"mmlu_eval_accuracy_professional_medicine": 0.4838709677419355,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.4074074074074074,
"mmlu_eval_accuracy_sociology": 0.5454545454545454,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7894736842105263,
"mmlu_loss": 1.0139663754026198,
"step": 2200
},
{
"epoch": 2.33,
"learning_rate": 0.0002,
"loss": 0.3431,
"step": 2210
},
{
"epoch": 2.34,
"learning_rate": 0.0002,
"loss": 0.3108,
"step": 2220
},
{
"epoch": 2.35,
"learning_rate": 0.0002,
"loss": 0.3294,
"step": 2230
},
{
"epoch": 2.36,
"learning_rate": 0.0002,
"loss": 0.3308,
"step": 2240
},
{
"epoch": 2.37,
"learning_rate": 0.0002,
"loss": 0.3629,
"step": 2250
},
{
"epoch": 2.38,
"learning_rate": 0.0002,
"loss": 0.3327,
"step": 2260
},
{
"epoch": 2.39,
"learning_rate": 0.0002,
"loss": 0.3354,
"step": 2270
},
{
"epoch": 2.4,
"learning_rate": 0.0002,
"loss": 0.3251,
"step": 2280
},
{
"epoch": 2.41,
"learning_rate": 0.0002,
"loss": 0.3278,
"step": 2290
},
{
"epoch": 2.42,
"learning_rate": 0.0002,
"loss": 0.3349,
"step": 2300
},
{
"epoch": 2.43,
"learning_rate": 0.0002,
"loss": 0.3838,
"step": 2310
},
{
"epoch": 2.45,
"learning_rate": 0.0002,
"loss": 0.3498,
"step": 2320
},
{
"epoch": 2.46,
"learning_rate": 0.0002,
"loss": 0.331,
"step": 2330
},
{
"epoch": 2.47,
"learning_rate": 0.0002,
"loss": 0.3075,
"step": 2340
},
{
"epoch": 2.48,
"learning_rate": 0.0002,
"loss": 0.3231,
"step": 2350
},
{
"epoch": 2.49,
"learning_rate": 0.0002,
"loss": 0.3452,
"step": 2360
},
{
"epoch": 2.5,
"learning_rate": 0.0002,
"loss": 0.3243,
"step": 2370
},
{
"epoch": 2.51,
"learning_rate": 0.0002,
"loss": 0.3462,
"step": 2380
},
{
"epoch": 2.52,
"learning_rate": 0.0002,
"loss": 0.3585,
"step": 2390
},
{
"epoch": 2.53,
"learning_rate": 0.0002,
"loss": 0.3354,
"step": 2400
},
{
"epoch": 2.53,
"eval_loss": 0.4825620651245117,
"eval_runtime": 128.0171,
"eval_samples_per_second": 7.811,
"eval_steps_per_second": 3.906,
"step": 2400
},
{
"epoch": 2.53,
"mmlu_eval_accuracy": 0.44874232482914916,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.2727272727272727,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.3,
"mmlu_eval_accuracy_high_school_biology": 0.3125,
"mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.36363636363636365,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.3684210526315789,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3235294117647059,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.4444444444444444,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7894736842105263,
"mmlu_loss": 1.0824664946908116,
"step": 2400
}
],
"max_steps": 5000,
"num_train_epochs": 6,
"total_flos": 3.3574020928937165e+17,
"trial_name": null,
"trial_params": null
}