Nous-Hermes-llama-2-7b_7b_cluster029_partitioned_v3_standardized_029
/
checkpoint-1200
/trainer_state.json
{ | |
"best_metric": 0.5720782279968262, | |
"best_model_checkpoint": "./output_v2/7b_cluster029_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_029/checkpoint-800", | |
"epoch": 2.43161094224924, | |
"global_step": 1200, | |
"is_hyper_param_search": false, | |
"is_local_process_zero": true, | |
"is_world_process_zero": true, | |
"log_history": [ | |
{ | |
"epoch": 0.02, | |
"learning_rate": 0.0002, | |
"loss": 0.6742, | |
"step": 10 | |
}, | |
{ | |
"epoch": 0.04, | |
"learning_rate": 0.0002, | |
"loss": 0.6589, | |
"step": 20 | |
}, | |
{ | |
"epoch": 0.06, | |
"learning_rate": 0.0002, | |
"loss": 0.6439, | |
"step": 30 | |
}, | |
{ | |
"epoch": 0.08, | |
"learning_rate": 0.0002, | |
"loss": 0.611, | |
"step": 40 | |
}, | |
{ | |
"epoch": 0.1, | |
"learning_rate": 0.0002, | |
"loss": 0.6127, | |
"step": 50 | |
}, | |
{ | |
"epoch": 0.12, | |
"learning_rate": 0.0002, | |
"loss": 0.6089, | |
"step": 60 | |
}, | |
{ | |
"epoch": 0.14, | |
"learning_rate": 0.0002, | |
"loss": 0.6102, | |
"step": 70 | |
}, | |
{ | |
"epoch": 0.16, | |
"learning_rate": 0.0002, | |
"loss": 0.5998, | |
"step": 80 | |
}, | |
{ | |
"epoch": 0.18, | |
"learning_rate": 0.0002, | |
"loss": 0.6031, | |
"step": 90 | |
}, | |
{ | |
"epoch": 0.2, | |
"learning_rate": 0.0002, | |
"loss": 0.5942, | |
"step": 100 | |
}, | |
{ | |
"epoch": 0.22, | |
"learning_rate": 0.0002, | |
"loss": 0.6057, | |
"step": 110 | |
}, | |
{ | |
"epoch": 0.24, | |
"learning_rate": 0.0002, | |
"loss": 0.5994, | |
"step": 120 | |
}, | |
{ | |
"epoch": 0.26, | |
"learning_rate": 0.0002, | |
"loss": 0.619, | |
"step": 130 | |
}, | |
{ | |
"epoch": 0.28, | |
"learning_rate": 0.0002, | |
"loss": 0.6001, | |
"step": 140 | |
}, | |
{ | |
"epoch": 0.3, | |
"learning_rate": 0.0002, | |
"loss": 0.6004, | |
"step": 150 | |
}, | |
{ | |
"epoch": 0.32, | |
"learning_rate": 0.0002, | |
"loss": 0.6108, | |
"step": 160 | |
}, | |
{ | |
"epoch": 0.34, | |
"learning_rate": 0.0002, | |
"loss": 0.5893, | |
"step": 170 | |
}, | |
{ | |
"epoch": 0.36, | |
"learning_rate": 0.0002, | |
"loss": 0.5896, | |
"step": 180 | |
}, | |
{ | |
"epoch": 0.39, | |
"learning_rate": 0.0002, | |
"loss": 0.5795, | |
"step": 190 | |
}, | |
{ | |
"epoch": 0.41, | |
"learning_rate": 0.0002, | |
"loss": 0.587, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.41, | |
"eval_loss": 0.6020743250846863, | |
"eval_runtime": 220.3104, | |
"eval_samples_per_second": 4.539, | |
"eval_steps_per_second": 2.27, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.41, | |
"mmlu_eval_accuracy": 0.4675041957905457, | |
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, | |
"mmlu_eval_accuracy_anatomy": 0.5, | |
"mmlu_eval_accuracy_astronomy": 0.4375, | |
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, | |
"mmlu_eval_accuracy_college_biology": 0.4375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.4375, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.6, | |
"mmlu_eval_accuracy_high_school_biology": 0.34375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, | |
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, | |
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, | |
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, | |
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, | |
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, | |
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, | |
"mmlu_eval_accuracy_international_law": 0.6923076923076923, | |
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, | |
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.5454545454545454, | |
"mmlu_eval_accuracy_marketing": 0.72, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, | |
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.6060606060606061, | |
"mmlu_eval_accuracy_philosophy": 0.5, | |
"mmlu_eval_accuracy_prehistory": 0.45714285714285713, | |
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, | |
"mmlu_eval_accuracy_professional_law": 0.32941176470588235, | |
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, | |
"mmlu_eval_accuracy_professional_psychology": 0.37681159420289856, | |
"mmlu_eval_accuracy_public_relations": 0.4166666666666667, | |
"mmlu_eval_accuracy_security_studies": 0.5555555555555556, | |
"mmlu_eval_accuracy_sociology": 0.6818181818181818, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, | |
"mmlu_eval_accuracy_virology": 0.5, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 1.169526866031689, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.43, | |
"learning_rate": 0.0002, | |
"loss": 0.6093, | |
"step": 210 | |
}, | |
{ | |
"epoch": 0.45, | |
"learning_rate": 0.0002, | |
"loss": 0.5798, | |
"step": 220 | |
}, | |
{ | |
"epoch": 0.47, | |
"learning_rate": 0.0002, | |
"loss": 0.5986, | |
"step": 230 | |
}, | |
{ | |
"epoch": 0.49, | |
"learning_rate": 0.0002, | |
"loss": 0.5874, | |
"step": 240 | |
}, | |
{ | |
"epoch": 0.51, | |
"learning_rate": 0.0002, | |
"loss": 0.5871, | |
"step": 250 | |
}, | |
{ | |
"epoch": 0.53, | |
"learning_rate": 0.0002, | |
"loss": 0.5827, | |
"step": 260 | |
}, | |
{ | |
"epoch": 0.55, | |
"learning_rate": 0.0002, | |
"loss": 0.5883, | |
"step": 270 | |
}, | |
{ | |
"epoch": 0.57, | |
"learning_rate": 0.0002, | |
"loss": 0.593, | |
"step": 280 | |
}, | |
{ | |
"epoch": 0.59, | |
"learning_rate": 0.0002, | |
"loss": 0.5939, | |
"step": 290 | |
}, | |
{ | |
"epoch": 0.61, | |
"learning_rate": 0.0002, | |
"loss": 0.5893, | |
"step": 300 | |
}, | |
{ | |
"epoch": 0.63, | |
"learning_rate": 0.0002, | |
"loss": 0.5809, | |
"step": 310 | |
}, | |
{ | |
"epoch": 0.65, | |
"learning_rate": 0.0002, | |
"loss": 0.5839, | |
"step": 320 | |
}, | |
{ | |
"epoch": 0.67, | |
"learning_rate": 0.0002, | |
"loss": 0.5898, | |
"step": 330 | |
}, | |
{ | |
"epoch": 0.69, | |
"learning_rate": 0.0002, | |
"loss": 0.5787, | |
"step": 340 | |
}, | |
{ | |
"epoch": 0.71, | |
"learning_rate": 0.0002, | |
"loss": 0.588, | |
"step": 350 | |
}, | |
{ | |
"epoch": 0.73, | |
"learning_rate": 0.0002, | |
"loss": 0.5679, | |
"step": 360 | |
}, | |
{ | |
"epoch": 0.75, | |
"learning_rate": 0.0002, | |
"loss": 0.5723, | |
"step": 370 | |
}, | |
{ | |
"epoch": 0.77, | |
"learning_rate": 0.0002, | |
"loss": 0.5878, | |
"step": 380 | |
}, | |
{ | |
"epoch": 0.79, | |
"learning_rate": 0.0002, | |
"loss": 0.582, | |
"step": 390 | |
}, | |
{ | |
"epoch": 0.81, | |
"learning_rate": 0.0002, | |
"loss": 0.5803, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.81, | |
"eval_loss": 0.5868815779685974, | |
"eval_runtime": 220.3563, | |
"eval_samples_per_second": 4.538, | |
"eval_steps_per_second": 2.269, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.81, | |
"mmlu_eval_accuracy": 0.4696096782214941, | |
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, | |
"mmlu_eval_accuracy_anatomy": 0.5, | |
"mmlu_eval_accuracy_astronomy": 0.4375, | |
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, | |
"mmlu_eval_accuracy_college_biology": 0.5, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.45454545454545453, | |
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.4375, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.5, | |
"mmlu_eval_accuracy_high_school_biology": 0.34375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.5, | |
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, | |
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, | |
"mmlu_eval_accuracy_human_aging": 0.7391304347826086, | |
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, | |
"mmlu_eval_accuracy_international_law": 0.6923076923076923, | |
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, | |
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, | |
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182, | |
"mmlu_eval_accuracy_management": 0.5454545454545454, | |
"mmlu_eval_accuracy_marketing": 0.72, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, | |
"mmlu_eval_accuracy_moral_disputes": 0.5, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.6060606060606061, | |
"mmlu_eval_accuracy_philosophy": 0.5, | |
"mmlu_eval_accuracy_prehistory": 0.45714285714285713, | |
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, | |
"mmlu_eval_accuracy_professional_law": 0.3588235294117647, | |
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, | |
"mmlu_eval_accuracy_professional_psychology": 0.37681159420289856, | |
"mmlu_eval_accuracy_public_relations": 0.4166666666666667, | |
"mmlu_eval_accuracy_security_studies": 0.5555555555555556, | |
"mmlu_eval_accuracy_sociology": 0.6363636363636364, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, | |
"mmlu_eval_accuracy_virology": 0.4444444444444444, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 1.0689004451892394, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.83, | |
"learning_rate": 0.0002, | |
"loss": 0.5871, | |
"step": 410 | |
}, | |
{ | |
"epoch": 0.85, | |
"learning_rate": 0.0002, | |
"loss": 0.5815, | |
"step": 420 | |
}, | |
{ | |
"epoch": 0.87, | |
"learning_rate": 0.0002, | |
"loss": 0.5658, | |
"step": 430 | |
}, | |
{ | |
"epoch": 0.89, | |
"learning_rate": 0.0002, | |
"loss": 0.5686, | |
"step": 440 | |
}, | |
{ | |
"epoch": 0.91, | |
"learning_rate": 0.0002, | |
"loss": 0.585, | |
"step": 450 | |
}, | |
{ | |
"epoch": 0.93, | |
"learning_rate": 0.0002, | |
"loss": 0.5673, | |
"step": 460 | |
}, | |
{ | |
"epoch": 0.95, | |
"learning_rate": 0.0002, | |
"loss": 0.5691, | |
"step": 470 | |
}, | |
{ | |
"epoch": 0.97, | |
"learning_rate": 0.0002, | |
"loss": 0.5693, | |
"step": 480 | |
}, | |
{ | |
"epoch": 0.99, | |
"learning_rate": 0.0002, | |
"loss": 0.5749, | |
"step": 490 | |
}, | |
{ | |
"epoch": 1.01, | |
"learning_rate": 0.0002, | |
"loss": 0.5457, | |
"step": 500 | |
}, | |
{ | |
"epoch": 1.03, | |
"learning_rate": 0.0002, | |
"loss": 0.5199, | |
"step": 510 | |
}, | |
{ | |
"epoch": 1.05, | |
"learning_rate": 0.0002, | |
"loss": 0.5157, | |
"step": 520 | |
}, | |
{ | |
"epoch": 1.07, | |
"learning_rate": 0.0002, | |
"loss": 0.513, | |
"step": 530 | |
}, | |
{ | |
"epoch": 1.09, | |
"learning_rate": 0.0002, | |
"loss": 0.4971, | |
"step": 540 | |
}, | |
{ | |
"epoch": 1.11, | |
"learning_rate": 0.0002, | |
"loss": 0.504, | |
"step": 550 | |
}, | |
{ | |
"epoch": 1.13, | |
"learning_rate": 0.0002, | |
"loss": 0.5191, | |
"step": 560 | |
}, | |
{ | |
"epoch": 1.16, | |
"learning_rate": 0.0002, | |
"loss": 0.5196, | |
"step": 570 | |
}, | |
{ | |
"epoch": 1.18, | |
"learning_rate": 0.0002, | |
"loss": 0.5236, | |
"step": 580 | |
}, | |
{ | |
"epoch": 1.2, | |
"learning_rate": 0.0002, | |
"loss": 0.4866, | |
"step": 590 | |
}, | |
{ | |
"epoch": 1.22, | |
"learning_rate": 0.0002, | |
"loss": 0.5147, | |
"step": 600 | |
}, | |
{ | |
"epoch": 1.22, | |
"eval_loss": 0.5827956199645996, | |
"eval_runtime": 220.4163, | |
"eval_samples_per_second": 4.537, | |
"eval_steps_per_second": 2.268, | |
"step": 600 | |
}, | |
{ | |
"epoch": 1.22, | |
"mmlu_eval_accuracy": 0.468505142513405, | |
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.5625, | |
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, | |
"mmlu_eval_accuracy_college_biology": 0.4375, | |
"mmlu_eval_accuracy_college_chemistry": 0.25, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.4375, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.5, | |
"mmlu_eval_accuracy_high_school_biology": 0.375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, | |
"mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444, | |
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.5, | |
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, | |
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, | |
"mmlu_eval_accuracy_human_aging": 0.7391304347826086, | |
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, | |
"mmlu_eval_accuracy_international_law": 0.7692307692307693, | |
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, | |
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, | |
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182, | |
"mmlu_eval_accuracy_management": 0.45454545454545453, | |
"mmlu_eval_accuracy_marketing": 0.72, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, | |
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.6363636363636364, | |
"mmlu_eval_accuracy_philosophy": 0.4411764705882353, | |
"mmlu_eval_accuracy_prehistory": 0.5142857142857142, | |
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, | |
"mmlu_eval_accuracy_professional_law": 0.32941176470588235, | |
"mmlu_eval_accuracy_professional_medicine": 0.4838709677419355, | |
"mmlu_eval_accuracy_professional_psychology": 0.37681159420289856, | |
"mmlu_eval_accuracy_public_relations": 0.4166666666666667, | |
"mmlu_eval_accuracy_security_studies": 0.6296296296296297, | |
"mmlu_eval_accuracy_sociology": 0.6818181818181818, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, | |
"mmlu_eval_accuracy_virology": 0.4444444444444444, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 1.0294917702441426, | |
"step": 600 | |
}, | |
{ | |
"epoch": 1.24, | |
"learning_rate": 0.0002, | |
"loss": 0.5055, | |
"step": 610 | |
}, | |
{ | |
"epoch": 1.26, | |
"learning_rate": 0.0002, | |
"loss": 0.4929, | |
"step": 620 | |
}, | |
{ | |
"epoch": 1.28, | |
"learning_rate": 0.0002, | |
"loss": 0.5117, | |
"step": 630 | |
}, | |
{ | |
"epoch": 1.3, | |
"learning_rate": 0.0002, | |
"loss": 0.5153, | |
"step": 640 | |
}, | |
{ | |
"epoch": 1.32, | |
"learning_rate": 0.0002, | |
"loss": 0.5119, | |
"step": 650 | |
}, | |
{ | |
"epoch": 1.34, | |
"learning_rate": 0.0002, | |
"loss": 0.5098, | |
"step": 660 | |
}, | |
{ | |
"epoch": 1.36, | |
"learning_rate": 0.0002, | |
"loss": 0.4965, | |
"step": 670 | |
}, | |
{ | |
"epoch": 1.38, | |
"learning_rate": 0.0002, | |
"loss": 0.5085, | |
"step": 680 | |
}, | |
{ | |
"epoch": 1.4, | |
"learning_rate": 0.0002, | |
"loss": 0.5002, | |
"step": 690 | |
}, | |
{ | |
"epoch": 1.42, | |
"learning_rate": 0.0002, | |
"loss": 0.4984, | |
"step": 700 | |
}, | |
{ | |
"epoch": 1.44, | |
"learning_rate": 0.0002, | |
"loss": 0.5161, | |
"step": 710 | |
}, | |
{ | |
"epoch": 1.46, | |
"learning_rate": 0.0002, | |
"loss": 0.524, | |
"step": 720 | |
}, | |
{ | |
"epoch": 1.48, | |
"learning_rate": 0.0002, | |
"loss": 0.5245, | |
"step": 730 | |
}, | |
{ | |
"epoch": 1.5, | |
"learning_rate": 0.0002, | |
"loss": 0.5011, | |
"step": 740 | |
}, | |
{ | |
"epoch": 1.52, | |
"learning_rate": 0.0002, | |
"loss": 0.5004, | |
"step": 750 | |
}, | |
{ | |
"epoch": 1.54, | |
"learning_rate": 0.0002, | |
"loss": 0.4794, | |
"step": 760 | |
}, | |
{ | |
"epoch": 1.56, | |
"learning_rate": 0.0002, | |
"loss": 0.499, | |
"step": 770 | |
}, | |
{ | |
"epoch": 1.58, | |
"learning_rate": 0.0002, | |
"loss": 0.5247, | |
"step": 780 | |
}, | |
{ | |
"epoch": 1.6, | |
"learning_rate": 0.0002, | |
"loss": 0.5012, | |
"step": 790 | |
}, | |
{ | |
"epoch": 1.62, | |
"learning_rate": 0.0002, | |
"loss": 0.4885, | |
"step": 800 | |
}, | |
{ | |
"epoch": 1.62, | |
"eval_loss": 0.5720782279968262, | |
"eval_runtime": 220.4387, | |
"eval_samples_per_second": 4.536, | |
"eval_steps_per_second": 2.268, | |
"step": 800 | |
}, | |
{ | |
"epoch": 1.62, | |
"mmlu_eval_accuracy": 0.4778576165582804, | |
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.5625, | |
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, | |
"mmlu_eval_accuracy_college_biology": 0.5, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.4375, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.6, | |
"mmlu_eval_accuracy_high_school_biology": 0.40625, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5, | |
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, | |
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7, | |
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, | |
"mmlu_eval_accuracy_human_aging": 0.7391304347826086, | |
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, | |
"mmlu_eval_accuracy_international_law": 0.7692307692307693, | |
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, | |
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, | |
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182, | |
"mmlu_eval_accuracy_management": 0.5454545454545454, | |
"mmlu_eval_accuracy_marketing": 0.72, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, | |
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.6060606060606061, | |
"mmlu_eval_accuracy_philosophy": 0.4411764705882353, | |
"mmlu_eval_accuracy_prehistory": 0.5428571428571428, | |
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, | |
"mmlu_eval_accuracy_professional_law": 0.3352941176470588, | |
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, | |
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, | |
"mmlu_eval_accuracy_public_relations": 0.5, | |
"mmlu_eval_accuracy_security_studies": 0.5925925925925926, | |
"mmlu_eval_accuracy_sociology": 0.6363636363636364, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, | |
"mmlu_eval_accuracy_virology": 0.5, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 1.0124665262474248, | |
"step": 800 | |
}, | |
{ | |
"epoch": 1.64, | |
"learning_rate": 0.0002, | |
"loss": 0.4962, | |
"step": 810 | |
}, | |
{ | |
"epoch": 1.66, | |
"learning_rate": 0.0002, | |
"loss": 0.5166, | |
"step": 820 | |
}, | |
{ | |
"epoch": 1.68, | |
"learning_rate": 0.0002, | |
"loss": 0.4949, | |
"step": 830 | |
}, | |
{ | |
"epoch": 1.7, | |
"learning_rate": 0.0002, | |
"loss": 0.5175, | |
"step": 840 | |
}, | |
{ | |
"epoch": 1.72, | |
"learning_rate": 0.0002, | |
"loss": 0.5084, | |
"step": 850 | |
}, | |
{ | |
"epoch": 1.74, | |
"learning_rate": 0.0002, | |
"loss": 0.4876, | |
"step": 860 | |
}, | |
{ | |
"epoch": 1.76, | |
"learning_rate": 0.0002, | |
"loss": 0.5081, | |
"step": 870 | |
}, | |
{ | |
"epoch": 1.78, | |
"learning_rate": 0.0002, | |
"loss": 0.5069, | |
"step": 880 | |
}, | |
{ | |
"epoch": 1.8, | |
"learning_rate": 0.0002, | |
"loss": 0.4948, | |
"step": 890 | |
}, | |
{ | |
"epoch": 1.82, | |
"learning_rate": 0.0002, | |
"loss": 0.5043, | |
"step": 900 | |
}, | |
{ | |
"epoch": 1.84, | |
"learning_rate": 0.0002, | |
"loss": 0.4945, | |
"step": 910 | |
}, | |
{ | |
"epoch": 1.86, | |
"learning_rate": 0.0002, | |
"loss": 0.4856, | |
"step": 920 | |
}, | |
{ | |
"epoch": 1.88, | |
"learning_rate": 0.0002, | |
"loss": 0.5026, | |
"step": 930 | |
}, | |
{ | |
"epoch": 1.9, | |
"learning_rate": 0.0002, | |
"loss": 0.5059, | |
"step": 940 | |
}, | |
{ | |
"epoch": 1.93, | |
"learning_rate": 0.0002, | |
"loss": 0.4825, | |
"step": 950 | |
}, | |
{ | |
"epoch": 1.95, | |
"learning_rate": 0.0002, | |
"loss": 0.5058, | |
"step": 960 | |
}, | |
{ | |
"epoch": 1.97, | |
"learning_rate": 0.0002, | |
"loss": 0.4945, | |
"step": 970 | |
}, | |
{ | |
"epoch": 1.99, | |
"learning_rate": 0.0002, | |
"loss": 0.5196, | |
"step": 980 | |
}, | |
{ | |
"epoch": 2.01, | |
"learning_rate": 0.0002, | |
"loss": 0.4916, | |
"step": 990 | |
}, | |
{ | |
"epoch": 2.03, | |
"learning_rate": 0.0002, | |
"loss": 0.408, | |
"step": 1000 | |
}, | |
{ | |
"epoch": 2.03, | |
"eval_loss": 0.5841771364212036, | |
"eval_runtime": 220.5232, | |
"eval_samples_per_second": 4.535, | |
"eval_steps_per_second": 2.267, | |
"step": 1000 | |
}, | |
{ | |
"epoch": 2.03, | |
"mmlu_eval_accuracy": 0.47790692788177713, | |
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, | |
"mmlu_eval_accuracy_anatomy": 0.5, | |
"mmlu_eval_accuracy_astronomy": 0.5625, | |
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, | |
"mmlu_eval_accuracy_college_biology": 0.5, | |
"mmlu_eval_accuracy_college_chemistry": 0.25, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.4375, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.5, | |
"mmlu_eval_accuracy_high_school_biology": 0.34375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.5384615384615384, | |
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, | |
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, | |
"mmlu_eval_accuracy_high_school_us_history": 0.5454545454545454, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, | |
"mmlu_eval_accuracy_human_aging": 0.7391304347826086, | |
"mmlu_eval_accuracy_human_sexuality": 0.5, | |
"mmlu_eval_accuracy_international_law": 0.6923076923076923, | |
"mmlu_eval_accuracy_jurisprudence": 0.18181818181818182, | |
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.45454545454545453, | |
"mmlu_eval_accuracy_marketing": 0.72, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, | |
"mmlu_eval_accuracy_moral_disputes": 0.5, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.6363636363636364, | |
"mmlu_eval_accuracy_philosophy": 0.4411764705882353, | |
"mmlu_eval_accuracy_prehistory": 0.5428571428571428, | |
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, | |
"mmlu_eval_accuracy_professional_law": 0.36470588235294116, | |
"mmlu_eval_accuracy_professional_medicine": 0.4838709677419355, | |
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087, | |
"mmlu_eval_accuracy_public_relations": 0.5, | |
"mmlu_eval_accuracy_security_studies": 0.6296296296296297, | |
"mmlu_eval_accuracy_sociology": 0.7272727272727273, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, | |
"mmlu_eval_accuracy_virology": 0.5555555555555556, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 1.051499547013726, | |
"step": 1000 | |
}, | |
{ | |
"epoch": 2.05, | |
"learning_rate": 0.0002, | |
"loss": 0.383, | |
"step": 1010 | |
}, | |
{ | |
"epoch": 2.07, | |
"learning_rate": 0.0002, | |
"loss": 0.4062, | |
"step": 1020 | |
}, | |
{ | |
"epoch": 2.09, | |
"learning_rate": 0.0002, | |
"loss": 0.4133, | |
"step": 1030 | |
}, | |
{ | |
"epoch": 2.11, | |
"learning_rate": 0.0002, | |
"loss": 0.4063, | |
"step": 1040 | |
}, | |
{ | |
"epoch": 2.13, | |
"learning_rate": 0.0002, | |
"loss": 0.4027, | |
"step": 1050 | |
}, | |
{ | |
"epoch": 2.15, | |
"learning_rate": 0.0002, | |
"loss": 0.3987, | |
"step": 1060 | |
}, | |
{ | |
"epoch": 2.17, | |
"learning_rate": 0.0002, | |
"loss": 0.4103, | |
"step": 1070 | |
}, | |
{ | |
"epoch": 2.19, | |
"learning_rate": 0.0002, | |
"loss": 0.417, | |
"step": 1080 | |
}, | |
{ | |
"epoch": 2.21, | |
"learning_rate": 0.0002, | |
"loss": 0.4004, | |
"step": 1090 | |
}, | |
{ | |
"epoch": 2.23, | |
"learning_rate": 0.0002, | |
"loss": 0.4134, | |
"step": 1100 | |
}, | |
{ | |
"epoch": 2.25, | |
"learning_rate": 0.0002, | |
"loss": 0.4072, | |
"step": 1110 | |
}, | |
{ | |
"epoch": 2.27, | |
"learning_rate": 0.0002, | |
"loss": 0.4016, | |
"step": 1120 | |
}, | |
{ | |
"epoch": 2.29, | |
"learning_rate": 0.0002, | |
"loss": 0.4238, | |
"step": 1130 | |
}, | |
{ | |
"epoch": 2.31, | |
"learning_rate": 0.0002, | |
"loss": 0.3953, | |
"step": 1140 | |
}, | |
{ | |
"epoch": 2.33, | |
"learning_rate": 0.0002, | |
"loss": 0.3951, | |
"step": 1150 | |
}, | |
{ | |
"epoch": 2.35, | |
"learning_rate": 0.0002, | |
"loss": 0.3971, | |
"step": 1160 | |
}, | |
{ | |
"epoch": 2.37, | |
"learning_rate": 0.0002, | |
"loss": 0.3963, | |
"step": 1170 | |
}, | |
{ | |
"epoch": 2.39, | |
"learning_rate": 0.0002, | |
"loss": 0.4151, | |
"step": 1180 | |
}, | |
{ | |
"epoch": 2.41, | |
"learning_rate": 0.0002, | |
"loss": 0.4158, | |
"step": 1190 | |
}, | |
{ | |
"epoch": 2.43, | |
"learning_rate": 0.0002, | |
"loss": 0.3982, | |
"step": 1200 | |
}, | |
{ | |
"epoch": 2.43, | |
"eval_loss": 0.5915235877037048, | |
"eval_runtime": 220.412, | |
"eval_samples_per_second": 4.537, | |
"eval_steps_per_second": 2.268, | |
"step": 1200 | |
}, | |
{ | |
"epoch": 2.43, | |
"mmlu_eval_accuracy": 0.4767521778303616, | |
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.5625, | |
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, | |
"mmlu_eval_accuracy_college_biology": 0.4375, | |
"mmlu_eval_accuracy_college_chemistry": 0.0, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.375, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.5, | |
"mmlu_eval_accuracy_high_school_biology": 0.375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.5, | |
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, | |
"mmlu_eval_accuracy_high_school_psychology": 0.75, | |
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, | |
"mmlu_eval_accuracy_human_aging": 0.7391304347826086, | |
"mmlu_eval_accuracy_human_sexuality": 0.5, | |
"mmlu_eval_accuracy_international_law": 0.7692307692307693, | |
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, | |
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.5454545454545454, | |
"mmlu_eval_accuracy_marketing": 0.72, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, | |
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.6666666666666666, | |
"mmlu_eval_accuracy_philosophy": 0.5, | |
"mmlu_eval_accuracy_prehistory": 0.5428571428571428, | |
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, | |
"mmlu_eval_accuracy_professional_law": 0.35294117647058826, | |
"mmlu_eval_accuracy_professional_medicine": 0.5161290322580645, | |
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, | |
"mmlu_eval_accuracy_public_relations": 0.5833333333333334, | |
"mmlu_eval_accuracy_security_studies": 0.5555555555555556, | |
"mmlu_eval_accuracy_sociology": 0.7272727272727273, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, | |
"mmlu_eval_accuracy_virology": 0.5, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 1.0756092985639685, | |
"step": 1200 | |
} | |
], | |
"max_steps": 5000, | |
"num_train_epochs": 11, | |
"total_flos": 2.935148370955223e+17, | |
"trial_name": null, | |
"trial_params": null | |
} | |