prateeky2806's picture
Training in progress, step 200
c293b8b
{
"best_metric": 0.6020743250846863,
"best_model_checkpoint": "./output_v2/7b_cluster029_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_029/checkpoint-200",
"epoch": 0.40526849037487334,
"global_step": 200,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.6742,
"step": 10
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.6589,
"step": 20
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.6439,
"step": 30
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.611,
"step": 40
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.6127,
"step": 50
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.6089,
"step": 60
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.6102,
"step": 70
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.5998,
"step": 80
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.6031,
"step": 90
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.5942,
"step": 100
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.6057,
"step": 110
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.5994,
"step": 120
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 0.619,
"step": 130
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.6001,
"step": 140
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.6004,
"step": 150
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.6108,
"step": 160
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 0.5893,
"step": 170
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 0.5896,
"step": 180
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.5795,
"step": 190
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.587,
"step": 200
},
{
"epoch": 0.41,
"eval_loss": 0.6020743250846863,
"eval_runtime": 220.3104,
"eval_samples_per_second": 4.539,
"eval_steps_per_second": 2.27,
"step": 200
},
{
"epoch": 0.41,
"mmlu_eval_accuracy": 0.4675041957905457,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.32941176470588235,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.37681159420289856,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.169526866031689,
"step": 200
}
],
"max_steps": 5000,
"num_train_epochs": 11,
"total_flos": 4.887015707226931e+16,
"trial_name": null,
"trial_params": null
}