prateeky2806's picture
Training in progress, step 200
f4576d5
raw
history blame
6.51 kB
{
"best_metric": 0.531296968460083,
"best_model_checkpoint": "./output_v2/7b_cluster05_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_05/checkpoint-200",
"epoch": 0.5947955390334573,
"global_step": 200,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.6832,
"step": 10
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.5389,
"step": 20
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.5072,
"step": 30
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.5211,
"step": 40
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.5888,
"step": 50
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.534,
"step": 60
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.5684,
"step": 70
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.514,
"step": 80
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.5518,
"step": 90
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.5034,
"step": 100
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.542,
"step": 110
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 0.4847,
"step": 120
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.4772,
"step": 130
},
{
"epoch": 0.42,
"learning_rate": 0.0002,
"loss": 0.5196,
"step": 140
},
{
"epoch": 0.45,
"learning_rate": 0.0002,
"loss": 0.4672,
"step": 150
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 0.4913,
"step": 160
},
{
"epoch": 0.51,
"learning_rate": 0.0002,
"loss": 0.5498,
"step": 170
},
{
"epoch": 0.54,
"learning_rate": 0.0002,
"loss": 0.5328,
"step": 180
},
{
"epoch": 0.57,
"learning_rate": 0.0002,
"loss": 0.5313,
"step": 190
},
{
"epoch": 0.59,
"learning_rate": 0.0002,
"loss": 0.515,
"step": 200
},
{
"epoch": 0.59,
"eval_loss": 0.531296968460083,
"eval_runtime": 174.4771,
"eval_samples_per_second": 5.731,
"eval_steps_per_second": 2.866,
"step": 200
},
{
"epoch": 0.59,
"mmlu_eval_accuracy": 0.46292469330066577,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.3125,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.18181818181818182,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.5,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.65,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.39473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.4,
"mmlu_eval_accuracy_professional_accounting": 0.3548387096774194,
"mmlu_eval_accuracy_professional_law": 0.3352941176470588,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.3857738420406147,
"step": 200
}
],
"max_steps": 5000,
"num_train_epochs": 15,
"total_flos": 4.043892293546803e+16,
"trial_name": null,
"trial_params": null
}