|
{ |
|
"best_metric": 0.7563537359237671, |
|
"best_model_checkpoint": "experts/expert-16/checkpoint-800", |
|
"epoch": 0.2534854245880862, |
|
"global_step": 800, |
|
"is_hyper_param_search": false, |
|
"is_local_process_zero": true, |
|
"is_world_process_zero": true, |
|
"log_history": [ |
|
{ |
|
"epoch": 0.0, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8339, |
|
"step": 10 |
|
}, |
|
{ |
|
"epoch": 0.01, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8289, |
|
"step": 20 |
|
}, |
|
{ |
|
"epoch": 0.01, |
|
"learning_rate": 0.0002, |
|
"loss": 0.9041, |
|
"step": 30 |
|
}, |
|
{ |
|
"epoch": 0.01, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8491, |
|
"step": 40 |
|
}, |
|
{ |
|
"epoch": 0.02, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8151, |
|
"step": 50 |
|
}, |
|
{ |
|
"epoch": 0.02, |
|
"learning_rate": 0.0002, |
|
"loss": 0.79, |
|
"step": 60 |
|
}, |
|
{ |
|
"epoch": 0.02, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7835, |
|
"step": 70 |
|
}, |
|
{ |
|
"epoch": 0.03, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8831, |
|
"step": 80 |
|
}, |
|
{ |
|
"epoch": 0.03, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8607, |
|
"step": 90 |
|
}, |
|
{ |
|
"epoch": 0.03, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7876, |
|
"step": 100 |
|
}, |
|
{ |
|
"epoch": 0.03, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8031, |
|
"step": 110 |
|
}, |
|
{ |
|
"epoch": 0.04, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8207, |
|
"step": 120 |
|
}, |
|
{ |
|
"epoch": 0.04, |
|
"learning_rate": 0.0002, |
|
"loss": 0.807, |
|
"step": 130 |
|
}, |
|
{ |
|
"epoch": 0.04, |
|
"learning_rate": 0.0002, |
|
"loss": 0.9262, |
|
"step": 140 |
|
}, |
|
{ |
|
"epoch": 0.05, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7964, |
|
"step": 150 |
|
}, |
|
{ |
|
"epoch": 0.05, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7879, |
|
"step": 160 |
|
}, |
|
{ |
|
"epoch": 0.05, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7587, |
|
"step": 170 |
|
}, |
|
{ |
|
"epoch": 0.06, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8091, |
|
"step": 180 |
|
}, |
|
{ |
|
"epoch": 0.06, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8615, |
|
"step": 190 |
|
}, |
|
{ |
|
"epoch": 0.06, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8672, |
|
"step": 200 |
|
}, |
|
{ |
|
"epoch": 0.06, |
|
"eval_loss": 0.7779108881950378, |
|
"eval_runtime": 110.9863, |
|
"eval_samples_per_second": 9.01, |
|
"eval_steps_per_second": 4.505, |
|
"step": 200 |
|
}, |
|
{ |
|
"epoch": 0.06, |
|
"mmlu_eval_accuracy": 0.4744171116325413, |
|
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, |
|
"mmlu_eval_accuracy_anatomy": 0.7142857142857143, |
|
"mmlu_eval_accuracy_astronomy": 0.4375, |
|
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, |
|
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, |
|
"mmlu_eval_accuracy_college_biology": 0.4375, |
|
"mmlu_eval_accuracy_college_chemistry": 0.125, |
|
"mmlu_eval_accuracy_college_computer_science": 0.18181818181818182, |
|
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, |
|
"mmlu_eval_accuracy_college_medicine": 0.45454545454545453, |
|
"mmlu_eval_accuracy_college_physics": 0.36363636363636365, |
|
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, |
|
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, |
|
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, |
|
"mmlu_eval_accuracy_electrical_engineering": 0.25, |
|
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, |
|
"mmlu_eval_accuracy_formal_logic": 0.07142857142857142, |
|
"mmlu_eval_accuracy_global_facts": 0.4, |
|
"mmlu_eval_accuracy_high_school_biology": 0.375, |
|
"mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, |
|
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, |
|
"mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, |
|
"mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, |
|
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, |
|
"mmlu_eval_accuracy_high_school_macroeconomics": 0.4418604651162791, |
|
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, |
|
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077, |
|
"mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, |
|
"mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, |
|
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, |
|
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, |
|
"mmlu_eval_accuracy_high_school_world_history": 0.7692307692307693, |
|
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, |
|
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, |
|
"mmlu_eval_accuracy_international_law": 0.8461538461538461, |
|
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, |
|
"mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, |
|
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182, |
|
"mmlu_eval_accuracy_management": 0.6363636363636364, |
|
"mmlu_eval_accuracy_marketing": 0.88, |
|
"mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, |
|
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, |
|
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, |
|
"mmlu_eval_accuracy_moral_scenarios": 0.27, |
|
"mmlu_eval_accuracy_nutrition": 0.6666666666666666, |
|
"mmlu_eval_accuracy_philosophy": 0.5, |
|
"mmlu_eval_accuracy_prehistory": 0.42857142857142855, |
|
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, |
|
"mmlu_eval_accuracy_professional_law": 0.3176470588235294, |
|
"mmlu_eval_accuracy_professional_medicine": 0.5483870967741935, |
|
"mmlu_eval_accuracy_professional_psychology": 0.4927536231884058, |
|
"mmlu_eval_accuracy_public_relations": 0.6666666666666666, |
|
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, |
|
"mmlu_eval_accuracy_sociology": 0.6818181818181818, |
|
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, |
|
"mmlu_eval_accuracy_virology": 0.5555555555555556, |
|
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, |
|
"mmlu_loss": 1.5868234255450824, |
|
"step": 200 |
|
}, |
|
{ |
|
"epoch": 0.07, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8316, |
|
"step": 210 |
|
}, |
|
{ |
|
"epoch": 0.07, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8454, |
|
"step": 220 |
|
}, |
|
{ |
|
"epoch": 0.07, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8434, |
|
"step": 230 |
|
}, |
|
{ |
|
"epoch": 0.08, |
|
"learning_rate": 0.0002, |
|
"loss": 0.821, |
|
"step": 240 |
|
}, |
|
{ |
|
"epoch": 0.08, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7893, |
|
"step": 250 |
|
}, |
|
{ |
|
"epoch": 0.08, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8242, |
|
"step": 260 |
|
}, |
|
{ |
|
"epoch": 0.09, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8128, |
|
"step": 270 |
|
}, |
|
{ |
|
"epoch": 0.09, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8344, |
|
"step": 280 |
|
}, |
|
{ |
|
"epoch": 0.09, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8338, |
|
"step": 290 |
|
}, |
|
{ |
|
"epoch": 0.1, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7981, |
|
"step": 300 |
|
}, |
|
{ |
|
"epoch": 0.1, |
|
"learning_rate": 0.0002, |
|
"loss": 0.781, |
|
"step": 310 |
|
}, |
|
{ |
|
"epoch": 0.1, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7717, |
|
"step": 320 |
|
}, |
|
{ |
|
"epoch": 0.1, |
|
"learning_rate": 0.0002, |
|
"loss": 0.767, |
|
"step": 330 |
|
}, |
|
{ |
|
"epoch": 0.11, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7925, |
|
"step": 340 |
|
}, |
|
{ |
|
"epoch": 0.11, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8226, |
|
"step": 350 |
|
}, |
|
{ |
|
"epoch": 0.11, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7912, |
|
"step": 360 |
|
}, |
|
{ |
|
"epoch": 0.12, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8093, |
|
"step": 370 |
|
}, |
|
{ |
|
"epoch": 0.12, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7648, |
|
"step": 380 |
|
}, |
|
{ |
|
"epoch": 0.12, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7866, |
|
"step": 390 |
|
}, |
|
{ |
|
"epoch": 0.13, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7976, |
|
"step": 400 |
|
}, |
|
{ |
|
"epoch": 0.13, |
|
"eval_loss": 0.7656086683273315, |
|
"eval_runtime": 110.9802, |
|
"eval_samples_per_second": 9.011, |
|
"eval_steps_per_second": 4.505, |
|
"step": 400 |
|
}, |
|
{ |
|
"epoch": 0.13, |
|
"mmlu_eval_accuracy": 0.47124130233512024, |
|
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, |
|
"mmlu_eval_accuracy_anatomy": 0.6428571428571429, |
|
"mmlu_eval_accuracy_astronomy": 0.4375, |
|
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, |
|
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, |
|
"mmlu_eval_accuracy_college_biology": 0.4375, |
|
"mmlu_eval_accuracy_college_chemistry": 0.125, |
|
"mmlu_eval_accuracy_college_computer_science": 0.18181818181818182, |
|
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, |
|
"mmlu_eval_accuracy_college_medicine": 0.45454545454545453, |
|
"mmlu_eval_accuracy_college_physics": 0.36363636363636365, |
|
"mmlu_eval_accuracy_computer_security": 0.45454545454545453, |
|
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, |
|
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, |
|
"mmlu_eval_accuracy_electrical_engineering": 0.25, |
|
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, |
|
"mmlu_eval_accuracy_formal_logic": 0.07142857142857142, |
|
"mmlu_eval_accuracy_global_facts": 0.4, |
|
"mmlu_eval_accuracy_high_school_biology": 0.40625, |
|
"mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, |
|
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, |
|
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, |
|
"mmlu_eval_accuracy_high_school_geography": 0.9090909090909091, |
|
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, |
|
"mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744, |
|
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, |
|
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, |
|
"mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, |
|
"mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, |
|
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, |
|
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, |
|
"mmlu_eval_accuracy_high_school_world_history": 0.7692307692307693, |
|
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, |
|
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, |
|
"mmlu_eval_accuracy_international_law": 0.8461538461538461, |
|
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, |
|
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, |
|
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182, |
|
"mmlu_eval_accuracy_management": 0.6363636363636364, |
|
"mmlu_eval_accuracy_marketing": 0.84, |
|
"mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, |
|
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, |
|
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, |
|
"mmlu_eval_accuracy_moral_scenarios": 0.25, |
|
"mmlu_eval_accuracy_nutrition": 0.6060606060606061, |
|
"mmlu_eval_accuracy_philosophy": 0.5, |
|
"mmlu_eval_accuracy_prehistory": 0.4857142857142857, |
|
"mmlu_eval_accuracy_professional_accounting": 0.3870967741935484, |
|
"mmlu_eval_accuracy_professional_law": 0.3058823529411765, |
|
"mmlu_eval_accuracy_professional_medicine": 0.5483870967741935, |
|
"mmlu_eval_accuracy_professional_psychology": 0.5217391304347826, |
|
"mmlu_eval_accuracy_public_relations": 0.6666666666666666, |
|
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, |
|
"mmlu_eval_accuracy_sociology": 0.6818181818181818, |
|
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, |
|
"mmlu_eval_accuracy_virology": 0.5, |
|
"mmlu_eval_accuracy_world_religions": 0.6842105263157895, |
|
"mmlu_loss": 1.4339068503199297, |
|
"step": 400 |
|
}, |
|
{ |
|
"epoch": 0.13, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8182, |
|
"step": 410 |
|
}, |
|
{ |
|
"epoch": 0.13, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8438, |
|
"step": 420 |
|
}, |
|
{ |
|
"epoch": 0.14, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8184, |
|
"step": 430 |
|
}, |
|
{ |
|
"epoch": 0.14, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8202, |
|
"step": 440 |
|
}, |
|
{ |
|
"epoch": 0.14, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8264, |
|
"step": 450 |
|
}, |
|
{ |
|
"epoch": 0.15, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8384, |
|
"step": 460 |
|
}, |
|
{ |
|
"epoch": 0.15, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8372, |
|
"step": 470 |
|
}, |
|
{ |
|
"epoch": 0.15, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8072, |
|
"step": 480 |
|
}, |
|
{ |
|
"epoch": 0.16, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8214, |
|
"step": 490 |
|
}, |
|
{ |
|
"epoch": 0.16, |
|
"learning_rate": 0.0002, |
|
"loss": 0.814, |
|
"step": 500 |
|
}, |
|
{ |
|
"epoch": 0.16, |
|
"learning_rate": 0.0002, |
|
"loss": 0.847, |
|
"step": 510 |
|
}, |
|
{ |
|
"epoch": 0.16, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8444, |
|
"step": 520 |
|
}, |
|
{ |
|
"epoch": 0.17, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8096, |
|
"step": 530 |
|
}, |
|
{ |
|
"epoch": 0.17, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8496, |
|
"step": 540 |
|
}, |
|
{ |
|
"epoch": 0.17, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7729, |
|
"step": 550 |
|
}, |
|
{ |
|
"epoch": 0.18, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7826, |
|
"step": 560 |
|
}, |
|
{ |
|
"epoch": 0.18, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7478, |
|
"step": 570 |
|
}, |
|
{ |
|
"epoch": 0.18, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7953, |
|
"step": 580 |
|
}, |
|
{ |
|
"epoch": 0.19, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7363, |
|
"step": 590 |
|
}, |
|
{ |
|
"epoch": 0.19, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7971, |
|
"step": 600 |
|
}, |
|
{ |
|
"epoch": 0.19, |
|
"eval_loss": 0.7616064548492432, |
|
"eval_runtime": 110.9404, |
|
"eval_samples_per_second": 9.014, |
|
"eval_steps_per_second": 4.507, |
|
"step": 600 |
|
}, |
|
{ |
|
"epoch": 0.19, |
|
"mmlu_eval_accuracy": 0.4749850916074463, |
|
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, |
|
"mmlu_eval_accuracy_anatomy": 0.7142857142857143, |
|
"mmlu_eval_accuracy_astronomy": 0.4375, |
|
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, |
|
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, |
|
"mmlu_eval_accuracy_college_biology": 0.4375, |
|
"mmlu_eval_accuracy_college_chemistry": 0.25, |
|
"mmlu_eval_accuracy_college_computer_science": 0.18181818181818182, |
|
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, |
|
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727, |
|
"mmlu_eval_accuracy_college_physics": 0.36363636363636365, |
|
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, |
|
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, |
|
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, |
|
"mmlu_eval_accuracy_electrical_engineering": 0.25, |
|
"mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293, |
|
"mmlu_eval_accuracy_formal_logic": 0.07142857142857142, |
|
"mmlu_eval_accuracy_global_facts": 0.3, |
|
"mmlu_eval_accuracy_high_school_biology": 0.40625, |
|
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, |
|
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, |
|
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, |
|
"mmlu_eval_accuracy_high_school_geography": 0.9090909090909091, |
|
"mmlu_eval_accuracy_high_school_government_and_politics": 0.47619047619047616, |
|
"mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744, |
|
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, |
|
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077, |
|
"mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, |
|
"mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, |
|
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, |
|
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, |
|
"mmlu_eval_accuracy_high_school_world_history": 0.7692307692307693, |
|
"mmlu_eval_accuracy_human_aging": 0.6521739130434783, |
|
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, |
|
"mmlu_eval_accuracy_international_law": 0.8461538461538461, |
|
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, |
|
"mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, |
|
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182, |
|
"mmlu_eval_accuracy_management": 0.6363636363636364, |
|
"mmlu_eval_accuracy_marketing": 0.84, |
|
"mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, |
|
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, |
|
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, |
|
"mmlu_eval_accuracy_moral_scenarios": 0.26, |
|
"mmlu_eval_accuracy_nutrition": 0.6060606060606061, |
|
"mmlu_eval_accuracy_philosophy": 0.5294117647058824, |
|
"mmlu_eval_accuracy_prehistory": 0.5142857142857142, |
|
"mmlu_eval_accuracy_professional_accounting": 0.41935483870967744, |
|
"mmlu_eval_accuracy_professional_law": 0.3, |
|
"mmlu_eval_accuracy_professional_medicine": 0.5483870967741935, |
|
"mmlu_eval_accuracy_professional_psychology": 0.5072463768115942, |
|
"mmlu_eval_accuracy_public_relations": 0.6666666666666666, |
|
"mmlu_eval_accuracy_security_studies": 0.5555555555555556, |
|
"mmlu_eval_accuracy_sociology": 0.6818181818181818, |
|
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, |
|
"mmlu_eval_accuracy_virology": 0.5, |
|
"mmlu_eval_accuracy_world_religions": 0.6842105263157895, |
|
"mmlu_loss": 1.5647042619341658, |
|
"step": 600 |
|
}, |
|
{ |
|
"epoch": 0.19, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7936, |
|
"step": 610 |
|
}, |
|
{ |
|
"epoch": 0.2, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7319, |
|
"step": 620 |
|
}, |
|
{ |
|
"epoch": 0.2, |
|
"learning_rate": 0.0002, |
|
"loss": 0.79, |
|
"step": 630 |
|
}, |
|
{ |
|
"epoch": 0.2, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7806, |
|
"step": 640 |
|
}, |
|
{ |
|
"epoch": 0.21, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8833, |
|
"step": 650 |
|
}, |
|
{ |
|
"epoch": 0.21, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7711, |
|
"step": 660 |
|
}, |
|
{ |
|
"epoch": 0.21, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8242, |
|
"step": 670 |
|
}, |
|
{ |
|
"epoch": 0.22, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7948, |
|
"step": 680 |
|
}, |
|
{ |
|
"epoch": 0.22, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7417, |
|
"step": 690 |
|
}, |
|
{ |
|
"epoch": 0.22, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7275, |
|
"step": 700 |
|
}, |
|
{ |
|
"epoch": 0.22, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8137, |
|
"step": 710 |
|
}, |
|
{ |
|
"epoch": 0.23, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8568, |
|
"step": 720 |
|
}, |
|
{ |
|
"epoch": 0.23, |
|
"learning_rate": 0.0002, |
|
"loss": 0.802, |
|
"step": 730 |
|
}, |
|
{ |
|
"epoch": 0.23, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8202, |
|
"step": 740 |
|
}, |
|
{ |
|
"epoch": 0.24, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8077, |
|
"step": 750 |
|
}, |
|
{ |
|
"epoch": 0.24, |
|
"learning_rate": 0.0002, |
|
"loss": 0.814, |
|
"step": 760 |
|
}, |
|
{ |
|
"epoch": 0.24, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7971, |
|
"step": 770 |
|
}, |
|
{ |
|
"epoch": 0.25, |
|
"learning_rate": 0.0002, |
|
"loss": 0.798, |
|
"step": 780 |
|
}, |
|
{ |
|
"epoch": 0.25, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7806, |
|
"step": 790 |
|
}, |
|
{ |
|
"epoch": 0.25, |
|
"learning_rate": 0.0002, |
|
"loss": 0.8042, |
|
"step": 800 |
|
}, |
|
{ |
|
"epoch": 0.25, |
|
"eval_loss": 0.7563537359237671, |
|
"eval_runtime": 111.023, |
|
"eval_samples_per_second": 9.007, |
|
"eval_steps_per_second": 4.504, |
|
"step": 800 |
|
}, |
|
{ |
|
"epoch": 0.25, |
|
"mmlu_eval_accuracy": 0.4796267144005645, |
|
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, |
|
"mmlu_eval_accuracy_anatomy": 0.7142857142857143, |
|
"mmlu_eval_accuracy_astronomy": 0.4375, |
|
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, |
|
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, |
|
"mmlu_eval_accuracy_college_biology": 0.4375, |
|
"mmlu_eval_accuracy_college_chemistry": 0.125, |
|
"mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, |
|
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, |
|
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365, |
|
"mmlu_eval_accuracy_college_physics": 0.36363636363636365, |
|
"mmlu_eval_accuracy_computer_security": 0.45454545454545453, |
|
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, |
|
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, |
|
"mmlu_eval_accuracy_electrical_engineering": 0.25, |
|
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, |
|
"mmlu_eval_accuracy_formal_logic": 0.07142857142857142, |
|
"mmlu_eval_accuracy_global_facts": 0.4, |
|
"mmlu_eval_accuracy_high_school_biology": 0.375, |
|
"mmlu_eval_accuracy_high_school_chemistry": 0.2727272727272727, |
|
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, |
|
"mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, |
|
"mmlu_eval_accuracy_high_school_geography": 0.9090909090909091, |
|
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, |
|
"mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744, |
|
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, |
|
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, |
|
"mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, |
|
"mmlu_eval_accuracy_high_school_psychology": 0.8833333333333333, |
|
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, |
|
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, |
|
"mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307, |
|
"mmlu_eval_accuracy_human_aging": 0.7391304347826086, |
|
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, |
|
"mmlu_eval_accuracy_international_law": 0.8461538461538461, |
|
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, |
|
"mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, |
|
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, |
|
"mmlu_eval_accuracy_management": 0.6363636363636364, |
|
"mmlu_eval_accuracy_marketing": 0.84, |
|
"mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, |
|
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, |
|
"mmlu_eval_accuracy_moral_disputes": 0.5, |
|
"mmlu_eval_accuracy_moral_scenarios": 0.23, |
|
"mmlu_eval_accuracy_nutrition": 0.6363636363636364, |
|
"mmlu_eval_accuracy_philosophy": 0.4411764705882353, |
|
"mmlu_eval_accuracy_prehistory": 0.45714285714285713, |
|
"mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, |
|
"mmlu_eval_accuracy_professional_law": 0.3, |
|
"mmlu_eval_accuracy_professional_medicine": 0.5806451612903226, |
|
"mmlu_eval_accuracy_professional_psychology": 0.5072463768115942, |
|
"mmlu_eval_accuracy_public_relations": 0.6666666666666666, |
|
"mmlu_eval_accuracy_security_studies": 0.4074074074074074, |
|
"mmlu_eval_accuracy_sociology": 0.6363636363636364, |
|
"mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, |
|
"mmlu_eval_accuracy_virology": 0.5555555555555556, |
|
"mmlu_eval_accuracy_world_religions": 0.6842105263157895, |
|
"mmlu_loss": 1.4866046660796157, |
|
"step": 800 |
|
} |
|
], |
|
"max_steps": 10000, |
|
"num_train_epochs": 4, |
|
"total_flos": 2.4426204707743334e+17, |
|
"trial_name": null, |
|
"trial_params": null |
|
} |
|
|