expert-16 / checkpoint-800 /trainer_state.json
Farouk
Training in progress, step 800
8bb1e82
raw
history blame
24.8 kB
{
"best_metric": 0.7563537359237671,
"best_model_checkpoint": "experts/expert-16/checkpoint-800",
"epoch": 0.2534854245880862,
"global_step": 800,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.0,
"learning_rate": 0.0002,
"loss": 0.8339,
"step": 10
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.8289,
"step": 20
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.9041,
"step": 30
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.8491,
"step": 40
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.8151,
"step": 50
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.79,
"step": 60
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7835,
"step": 70
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.8831,
"step": 80
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.8607,
"step": 90
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7876,
"step": 100
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.8031,
"step": 110
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.8207,
"step": 120
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.807,
"step": 130
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.9262,
"step": 140
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7964,
"step": 150
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7879,
"step": 160
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7587,
"step": 170
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.8091,
"step": 180
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.8615,
"step": 190
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.8672,
"step": 200
},
{
"epoch": 0.06,
"eval_loss": 0.7779108881950378,
"eval_runtime": 110.9863,
"eval_samples_per_second": 9.01,
"eval_steps_per_second": 4.505,
"step": 200
},
{
"epoch": 0.06,
"mmlu_eval_accuracy": 0.4744171116325413,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.7142857142857143,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.18181818181818182,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.45454545454545453,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.25,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.07142857142857142,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_geography": 0.8636363636363636,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.4418604651162791,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077,
"mmlu_eval_accuracy_high_school_physics": 0.11764705882352941,
"mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
"mmlu_eval_accuracy_high_school_world_history": 0.7692307692307693,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.88,
"mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.27,
"mmlu_eval_accuracy_nutrition": 0.6666666666666666,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903,
"mmlu_eval_accuracy_professional_law": 0.3176470588235294,
"mmlu_eval_accuracy_professional_medicine": 0.5483870967741935,
"mmlu_eval_accuracy_professional_psychology": 0.4927536231884058,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.5868234255450824,
"step": 200
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.8316,
"step": 210
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.8454,
"step": 220
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.8434,
"step": 230
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.821,
"step": 240
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.7893,
"step": 250
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.8242,
"step": 260
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.8128,
"step": 270
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.8344,
"step": 280
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.8338,
"step": 290
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7981,
"step": 300
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.781,
"step": 310
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7717,
"step": 320
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.767,
"step": 330
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.7925,
"step": 340
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.8226,
"step": 350
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.7912,
"step": 360
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.8093,
"step": 370
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.7648,
"step": 380
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.7866,
"step": 390
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.7976,
"step": 400
},
{
"epoch": 0.13,
"eval_loss": 0.7656086683273315,
"eval_runtime": 110.9802,
"eval_samples_per_second": 9.011,
"eval_steps_per_second": 4.505,
"step": 400
},
{
"epoch": 0.13,
"mmlu_eval_accuracy": 0.47124130233512024,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.18181818181818182,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.45454545454545453,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.45454545454545453,
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.25,
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
"mmlu_eval_accuracy_formal_logic": 0.07142857142857142,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.9090909090909091,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615,
"mmlu_eval_accuracy_high_school_physics": 0.11764705882352941,
"mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.7692307692307693,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.84,
"mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.25,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.3870967741935484,
"mmlu_eval_accuracy_professional_law": 0.3058823529411765,
"mmlu_eval_accuracy_professional_medicine": 0.5483870967741935,
"mmlu_eval_accuracy_professional_psychology": 0.5217391304347826,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.4339068503199297,
"step": 400
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.8182,
"step": 410
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.8438,
"step": 420
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.8184,
"step": 430
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.8202,
"step": 440
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.8264,
"step": 450
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.8384,
"step": 460
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.8372,
"step": 470
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.8072,
"step": 480
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.8214,
"step": 490
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.814,
"step": 500
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.847,
"step": 510
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.8444,
"step": 520
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.8096,
"step": 530
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.8496,
"step": 540
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.7729,
"step": 550
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.7826,
"step": 560
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.7478,
"step": 570
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.7953,
"step": 580
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.7363,
"step": 590
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.7971,
"step": 600
},
{
"epoch": 0.19,
"eval_loss": 0.7616064548492432,
"eval_runtime": 110.9404,
"eval_samples_per_second": 9.014,
"eval_steps_per_second": 4.507,
"step": 600
},
{
"epoch": 0.19,
"mmlu_eval_accuracy": 0.4749850916074463,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.7142857142857143,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.18181818181818182,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.25,
"mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293,
"mmlu_eval_accuracy_formal_logic": 0.07142857142857142,
"mmlu_eval_accuracy_global_facts": 0.3,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.9090909090909091,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.47619047619047616,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077,
"mmlu_eval_accuracy_high_school_physics": 0.11764705882352941,
"mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
"mmlu_eval_accuracy_high_school_world_history": 0.7692307692307693,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.84,
"mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.26,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.5294117647058824,
"mmlu_eval_accuracy_prehistory": 0.5142857142857142,
"mmlu_eval_accuracy_professional_accounting": 0.41935483870967744,
"mmlu_eval_accuracy_professional_law": 0.3,
"mmlu_eval_accuracy_professional_medicine": 0.5483870967741935,
"mmlu_eval_accuracy_professional_psychology": 0.5072463768115942,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.5647042619341658,
"step": 600
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.7936,
"step": 610
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.7319,
"step": 620
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.79,
"step": 630
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.7806,
"step": 640
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.8833,
"step": 650
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.7711,
"step": 660
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.8242,
"step": 670
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.7948,
"step": 680
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.7417,
"step": 690
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.7275,
"step": 700
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.8137,
"step": 710
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.8568,
"step": 720
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.802,
"step": 730
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.8202,
"step": 740
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.8077,
"step": 750
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.814,
"step": 760
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.7971,
"step": 770
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.798,
"step": 780
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.7806,
"step": 790
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.8042,
"step": 800
},
{
"epoch": 0.25,
"eval_loss": 0.7563537359237671,
"eval_runtime": 111.023,
"eval_samples_per_second": 9.007,
"eval_steps_per_second": 4.504,
"step": 800
},
{
"epoch": 0.25,
"mmlu_eval_accuracy": 0.4796267144005645,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.7142857142857143,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.2727272727272727,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.45454545454545453,
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.25,
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
"mmlu_eval_accuracy_formal_logic": 0.07142857142857142,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.2727272727272727,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_geography": 0.9090909090909091,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.11764705882352941,
"mmlu_eval_accuracy_high_school_psychology": 0.8833333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
"mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.84,
"mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.6363636363636364,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.3548387096774194,
"mmlu_eval_accuracy_professional_law": 0.3,
"mmlu_eval_accuracy_professional_medicine": 0.5806451612903226,
"mmlu_eval_accuracy_professional_psychology": 0.5072463768115942,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.4074074074074074,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.4866046660796157,
"step": 800
}
],
"max_steps": 10000,
"num_train_epochs": 4,
"total_flos": 2.4426204707743334e+17,
"trial_name": null,
"trial_params": null
}