Farouk commited on
Commit
486646c
Β·
1 Parent(s): 1ff7526

Training in progress, step 3400

Browse files
adapter_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e0844c1552367d8cd58ff885430bedcf906de72eb83c89824d6f95ed3ec5893a
3
  size 319977229
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b4196de0932996d4255dbc07012134f6a55c6324be45a50877c52a7e48ebe58
3
  size 319977229
checkpoint-1200/adapter_model/adapter_model/README.md DELETED
@@ -1,32 +0,0 @@
1
- ---
2
- library_name: peft
3
- ---
4
- ## Training procedure
5
-
6
-
7
- The following `bitsandbytes` quantization config was used during training:
8
- - load_in_8bit: False
9
- - load_in_4bit: True
10
- - llm_int8_threshold: 6.0
11
- - llm_int8_skip_modules: None
12
- - llm_int8_enable_fp32_cpu_offload: False
13
- - llm_int8_has_fp16_weight: False
14
- - bnb_4bit_quant_type: nf4
15
- - bnb_4bit_use_double_quant: True
16
- - bnb_4bit_compute_dtype: bfloat16
17
-
18
- The following `bitsandbytes` quantization config was used during training:
19
- - load_in_8bit: False
20
- - load_in_4bit: True
21
- - llm_int8_threshold: 6.0
22
- - llm_int8_skip_modules: None
23
- - llm_int8_enable_fp32_cpu_offload: False
24
- - llm_int8_has_fp16_weight: False
25
- - bnb_4bit_quant_type: nf4
26
- - bnb_4bit_use_double_quant: True
27
- - bnb_4bit_compute_dtype: bfloat16
28
- ### Framework versions
29
-
30
- - PEFT 0.4.0
31
-
32
- - PEFT 0.4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-1200/adapter_model/adapter_model/adapter_config.json DELETED
@@ -1,26 +0,0 @@
1
- {
2
- "auto_mapping": null,
3
- "base_model_name_or_path": "pankajmathur/orca_mini_v3_7b",
4
- "bias": "none",
5
- "fan_in_fan_out": false,
6
- "inference_mode": true,
7
- "init_lora_weights": true,
8
- "layers_pattern": null,
9
- "layers_to_transform": null,
10
- "lora_alpha": 16.0,
11
- "lora_dropout": 0.1,
12
- "modules_to_save": null,
13
- "peft_type": "LORA",
14
- "r": 64,
15
- "revision": null,
16
- "target_modules": [
17
- "v_proj",
18
- "down_proj",
19
- "o_proj",
20
- "k_proj",
21
- "up_proj",
22
- "gate_proj",
23
- "q_proj"
24
- ],
25
- "task_type": "CAUSAL_LM"
26
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-1200/adapter_model/adapter_model/adapter_model.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:3bcd396b20ab3010695e908da9463718ea0f3e96437802a62506d98f12fc051a
3
- size 319977229
 
 
 
 
checkpoint-3000/adapter_model/adapter_model/README.md CHANGED
@@ -4,6 +4,17 @@ library_name: peft
4
  ## Training procedure
5
 
6
 
 
 
 
 
 
 
 
 
 
 
 
7
  The following `bitsandbytes` quantization config was used during training:
8
  - load_in_8bit: False
9
  - load_in_4bit: True
@@ -16,5 +27,6 @@ The following `bitsandbytes` quantization config was used during training:
16
  - bnb_4bit_compute_dtype: bfloat16
17
  ### Framework versions
18
 
 
19
 
20
  - PEFT 0.4.0
 
4
  ## Training procedure
5
 
6
 
7
+ The following `bitsandbytes` quantization config was used during training:
8
+ - load_in_8bit: False
9
+ - load_in_4bit: True
10
+ - llm_int8_threshold: 6.0
11
+ - llm_int8_skip_modules: None
12
+ - llm_int8_enable_fp32_cpu_offload: False
13
+ - llm_int8_has_fp16_weight: False
14
+ - bnb_4bit_quant_type: nf4
15
+ - bnb_4bit_use_double_quant: True
16
+ - bnb_4bit_compute_dtype: bfloat16
17
+
18
  The following `bitsandbytes` quantization config was used during training:
19
  - load_in_8bit: False
20
  - load_in_4bit: True
 
27
  - bnb_4bit_compute_dtype: bfloat16
28
  ### Framework versions
29
 
30
+ - PEFT 0.4.0
31
 
32
  - PEFT 0.4.0
checkpoint-3000/adapter_model/adapter_model/adapter_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6a84a04c110cc561cd61eda592343bba095aae111a21ec4a1b06c61f6cc30ba2
3
  size 319977229
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0844c1552367d8cd58ff885430bedcf906de72eb83c89824d6f95ed3ec5893a
3
  size 319977229
{checkpoint-1200 β†’ checkpoint-3400}/README.md RENAMED
File without changes
{checkpoint-1200 β†’ checkpoint-3400}/adapter_config.json RENAMED
File without changes
{checkpoint-1200 β†’ checkpoint-3400}/adapter_model.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:541b510a4d1929097c9b7d2bcb49ef8871a02fb9a8f6be5a732b67d24b380a71
3
  size 319977229
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b4196de0932996d4255dbc07012134f6a55c6324be45a50877c52a7e48ebe58
3
  size 319977229
{checkpoint-1200 β†’ checkpoint-3400}/added_tokens.json RENAMED
File without changes
{checkpoint-1200 β†’ checkpoint-3400}/optimizer.pt RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:67ce71d0850daa4562c241301912be8b654283950fbaa2a7b0d3898c2f728290
3
  size 1279539973
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62c86bdbbc5a65e9ce0220c98defcd1e2dd06e0d552570234db374f1fd2aa5e8
3
  size 1279539973
{checkpoint-1200 β†’ checkpoint-3400}/rng_state.pth RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:63bcfbd7f600e0d23e2f5264a23e0e1d6026a07fc1e791c6c05d06922efb836c
3
  size 14511
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e68b648b1f4fede7269e7ca38c747fc839ec2e4be1a50b8f83fbea860e124bd
3
  size 14511
{checkpoint-1200 β†’ checkpoint-3400}/scheduler.pt RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3d8d6be7898f87772ccbc5c732e900fe63a643c4595ce6af3d6bc6f811ba4b65
3
  size 627
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb3309524185001782da002e1efb7406e18966db2aee795c24a16a9ee18dd8d0
3
  size 627
{checkpoint-1200 β†’ checkpoint-3400}/special_tokens_map.json RENAMED
File without changes
{checkpoint-1200 β†’ checkpoint-3400}/tokenizer.model RENAMED
File without changes
{checkpoint-1200 β†’ checkpoint-3400}/tokenizer_config.json RENAMED
File without changes
{checkpoint-1200 β†’ checkpoint-3400}/trainer_state.json RENAMED
@@ -1,8 +1,8 @@
1
  {
2
- "best_metric": 0.7498393654823303,
3
- "best_model_checkpoint": "experts/expert-16/checkpoint-1200",
4
- "epoch": 0.38022813688212925,
5
- "global_step": 1200,
6
  "is_hyper_param_search": false,
7
  "is_local_process_zero": true,
8
  "is_world_process_zero": true,
@@ -1152,11 +1152,2112 @@
1152
  "mmlu_eval_accuracy_world_religions": 0.6842105263157895,
1153
  "mmlu_loss": 1.6994269322166244,
1154
  "step": 1200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1155
  }
1156
  ],
1157
  "max_steps": 10000,
1158
  "num_train_epochs": 4,
1159
- "total_flos": 3.664870475614126e+17,
1160
  "trial_name": null,
1161
  "trial_params": null
1162
  }
 
1
  {
2
+ "best_metric": 0.7343361377716064,
3
+ "best_model_checkpoint": "experts/expert-16/checkpoint-3000",
4
+ "epoch": 1.0773130544993663,
5
+ "global_step": 3400,
6
  "is_hyper_param_search": false,
7
  "is_local_process_zero": true,
8
  "is_world_process_zero": true,
 
1152
  "mmlu_eval_accuracy_world_religions": 0.6842105263157895,
1153
  "mmlu_loss": 1.6994269322166244,
1154
  "step": 1200
1155
+ },
1156
+ {
1157
+ "epoch": 0.38,
1158
+ "learning_rate": 0.0002,
1159
+ "loss": 0.7821,
1160
+ "step": 1210
1161
+ },
1162
+ {
1163
+ "epoch": 0.39,
1164
+ "learning_rate": 0.0002,
1165
+ "loss": 0.8138,
1166
+ "step": 1220
1167
+ },
1168
+ {
1169
+ "epoch": 0.39,
1170
+ "learning_rate": 0.0002,
1171
+ "loss": 0.717,
1172
+ "step": 1230
1173
+ },
1174
+ {
1175
+ "epoch": 0.39,
1176
+ "learning_rate": 0.0002,
1177
+ "loss": 0.7406,
1178
+ "step": 1240
1179
+ },
1180
+ {
1181
+ "epoch": 0.4,
1182
+ "learning_rate": 0.0002,
1183
+ "loss": 0.8031,
1184
+ "step": 1250
1185
+ },
1186
+ {
1187
+ "epoch": 0.4,
1188
+ "learning_rate": 0.0002,
1189
+ "loss": 0.7974,
1190
+ "step": 1260
1191
+ },
1192
+ {
1193
+ "epoch": 0.4,
1194
+ "learning_rate": 0.0002,
1195
+ "loss": 0.8001,
1196
+ "step": 1270
1197
+ },
1198
+ {
1199
+ "epoch": 0.41,
1200
+ "learning_rate": 0.0002,
1201
+ "loss": 0.766,
1202
+ "step": 1280
1203
+ },
1204
+ {
1205
+ "epoch": 0.41,
1206
+ "learning_rate": 0.0002,
1207
+ "loss": 0.7679,
1208
+ "step": 1290
1209
+ },
1210
+ {
1211
+ "epoch": 0.41,
1212
+ "learning_rate": 0.0002,
1213
+ "loss": 0.8017,
1214
+ "step": 1300
1215
+ },
1216
+ {
1217
+ "epoch": 0.42,
1218
+ "learning_rate": 0.0002,
1219
+ "loss": 0.8027,
1220
+ "step": 1310
1221
+ },
1222
+ {
1223
+ "epoch": 0.42,
1224
+ "learning_rate": 0.0002,
1225
+ "loss": 0.7819,
1226
+ "step": 1320
1227
+ },
1228
+ {
1229
+ "epoch": 0.42,
1230
+ "learning_rate": 0.0002,
1231
+ "loss": 0.7558,
1232
+ "step": 1330
1233
+ },
1234
+ {
1235
+ "epoch": 0.42,
1236
+ "learning_rate": 0.0002,
1237
+ "loss": 0.8363,
1238
+ "step": 1340
1239
+ },
1240
+ {
1241
+ "epoch": 0.43,
1242
+ "learning_rate": 0.0002,
1243
+ "loss": 0.7809,
1244
+ "step": 1350
1245
+ },
1246
+ {
1247
+ "epoch": 0.43,
1248
+ "learning_rate": 0.0002,
1249
+ "loss": 0.8114,
1250
+ "step": 1360
1251
+ },
1252
+ {
1253
+ "epoch": 0.43,
1254
+ "learning_rate": 0.0002,
1255
+ "loss": 0.8446,
1256
+ "step": 1370
1257
+ },
1258
+ {
1259
+ "epoch": 0.44,
1260
+ "learning_rate": 0.0002,
1261
+ "loss": 0.7877,
1262
+ "step": 1380
1263
+ },
1264
+ {
1265
+ "epoch": 0.44,
1266
+ "learning_rate": 0.0002,
1267
+ "loss": 0.8309,
1268
+ "step": 1390
1269
+ },
1270
+ {
1271
+ "epoch": 0.44,
1272
+ "learning_rate": 0.0002,
1273
+ "loss": 0.8131,
1274
+ "step": 1400
1275
+ },
1276
+ {
1277
+ "epoch": 0.44,
1278
+ "eval_loss": 0.7500243186950684,
1279
+ "eval_runtime": 111.0409,
1280
+ "eval_samples_per_second": 9.006,
1281
+ "eval_steps_per_second": 4.503,
1282
+ "step": 1400
1283
+ },
1284
+ {
1285
+ "epoch": 0.44,
1286
+ "mmlu_eval_accuracy": 0.4758070782649682,
1287
+ "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
1288
+ "mmlu_eval_accuracy_anatomy": 0.7142857142857143,
1289
+ "mmlu_eval_accuracy_astronomy": 0.4375,
1290
+ "mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
1291
+ "mmlu_eval_accuracy_clinical_knowledge": 0.5172413793103449,
1292
+ "mmlu_eval_accuracy_college_biology": 0.5,
1293
+ "mmlu_eval_accuracy_college_chemistry": 0.25,
1294
+ "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727,
1295
+ "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
1296
+ "mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
1297
+ "mmlu_eval_accuracy_college_physics": 0.2727272727272727,
1298
+ "mmlu_eval_accuracy_computer_security": 0.36363636363636365,
1299
+ "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
1300
+ "mmlu_eval_accuracy_econometrics": 0.16666666666666666,
1301
+ "mmlu_eval_accuracy_electrical_engineering": 0.25,
1302
+ "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
1303
+ "mmlu_eval_accuracy_formal_logic": 0.07142857142857142,
1304
+ "mmlu_eval_accuracy_global_facts": 0.4,
1305
+ "mmlu_eval_accuracy_high_school_biology": 0.375,
1306
+ "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727,
1307
+ "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
1308
+ "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
1309
+ "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636,
1310
+ "mmlu_eval_accuracy_high_school_government_and_politics": 0.42857142857142855,
1311
+ "mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744,
1312
+ "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
1313
+ "mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615,
1314
+ "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941,
1315
+ "mmlu_eval_accuracy_high_school_psychology": 0.8833333333333333,
1316
+ "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
1317
+ "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
1318
+ "mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923,
1319
+ "mmlu_eval_accuracy_human_aging": 0.6956521739130435,
1320
+ "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
1321
+ "mmlu_eval_accuracy_international_law": 0.8461538461538461,
1322
+ "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
1323
+ "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
1324
+ "mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
1325
+ "mmlu_eval_accuracy_management": 0.6363636363636364,
1326
+ "mmlu_eval_accuracy_marketing": 0.88,
1327
+ "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
1328
+ "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303,
1329
+ "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
1330
+ "mmlu_eval_accuracy_moral_scenarios": 0.24,
1331
+ "mmlu_eval_accuracy_nutrition": 0.6363636363636364,
1332
+ "mmlu_eval_accuracy_philosophy": 0.5588235294117647,
1333
+ "mmlu_eval_accuracy_prehistory": 0.4857142857142857,
1334
+ "mmlu_eval_accuracy_professional_accounting": 0.45161290322580644,
1335
+ "mmlu_eval_accuracy_professional_law": 0.32941176470588235,
1336
+ "mmlu_eval_accuracy_professional_medicine": 0.6129032258064516,
1337
+ "mmlu_eval_accuracy_professional_psychology": 0.5217391304347826,
1338
+ "mmlu_eval_accuracy_public_relations": 0.6666666666666666,
1339
+ "mmlu_eval_accuracy_security_studies": 0.4074074074074074,
1340
+ "mmlu_eval_accuracy_sociology": 0.6363636363636364,
1341
+ "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
1342
+ "mmlu_eval_accuracy_virology": 0.5555555555555556,
1343
+ "mmlu_eval_accuracy_world_religions": 0.7368421052631579,
1344
+ "mmlu_loss": 1.4974891513041355,
1345
+ "step": 1400
1346
+ },
1347
+ {
1348
+ "epoch": 0.45,
1349
+ "learning_rate": 0.0002,
1350
+ "loss": 0.8122,
1351
+ "step": 1410
1352
+ },
1353
+ {
1354
+ "epoch": 0.45,
1355
+ "learning_rate": 0.0002,
1356
+ "loss": 0.7754,
1357
+ "step": 1420
1358
+ },
1359
+ {
1360
+ "epoch": 0.45,
1361
+ "learning_rate": 0.0002,
1362
+ "loss": 0.8116,
1363
+ "step": 1430
1364
+ },
1365
+ {
1366
+ "epoch": 0.46,
1367
+ "learning_rate": 0.0002,
1368
+ "loss": 0.7442,
1369
+ "step": 1440
1370
+ },
1371
+ {
1372
+ "epoch": 0.46,
1373
+ "learning_rate": 0.0002,
1374
+ "loss": 0.7638,
1375
+ "step": 1450
1376
+ },
1377
+ {
1378
+ "epoch": 0.46,
1379
+ "learning_rate": 0.0002,
1380
+ "loss": 0.7746,
1381
+ "step": 1460
1382
+ },
1383
+ {
1384
+ "epoch": 0.47,
1385
+ "learning_rate": 0.0002,
1386
+ "loss": 0.7616,
1387
+ "step": 1470
1388
+ },
1389
+ {
1390
+ "epoch": 0.47,
1391
+ "learning_rate": 0.0002,
1392
+ "loss": 0.8144,
1393
+ "step": 1480
1394
+ },
1395
+ {
1396
+ "epoch": 0.47,
1397
+ "learning_rate": 0.0002,
1398
+ "loss": 0.7924,
1399
+ "step": 1490
1400
+ },
1401
+ {
1402
+ "epoch": 0.48,
1403
+ "learning_rate": 0.0002,
1404
+ "loss": 0.8075,
1405
+ "step": 1500
1406
+ },
1407
+ {
1408
+ "epoch": 0.48,
1409
+ "learning_rate": 0.0002,
1410
+ "loss": 0.769,
1411
+ "step": 1510
1412
+ },
1413
+ {
1414
+ "epoch": 0.48,
1415
+ "learning_rate": 0.0002,
1416
+ "loss": 0.7296,
1417
+ "step": 1520
1418
+ },
1419
+ {
1420
+ "epoch": 0.48,
1421
+ "learning_rate": 0.0002,
1422
+ "loss": 0.8284,
1423
+ "step": 1530
1424
+ },
1425
+ {
1426
+ "epoch": 0.49,
1427
+ "learning_rate": 0.0002,
1428
+ "loss": 0.82,
1429
+ "step": 1540
1430
+ },
1431
+ {
1432
+ "epoch": 0.49,
1433
+ "learning_rate": 0.0002,
1434
+ "loss": 0.7619,
1435
+ "step": 1550
1436
+ },
1437
+ {
1438
+ "epoch": 0.49,
1439
+ "learning_rate": 0.0002,
1440
+ "loss": 0.7862,
1441
+ "step": 1560
1442
+ },
1443
+ {
1444
+ "epoch": 0.5,
1445
+ "learning_rate": 0.0002,
1446
+ "loss": 0.7835,
1447
+ "step": 1570
1448
+ },
1449
+ {
1450
+ "epoch": 0.5,
1451
+ "learning_rate": 0.0002,
1452
+ "loss": 0.7624,
1453
+ "step": 1580
1454
+ },
1455
+ {
1456
+ "epoch": 0.5,
1457
+ "learning_rate": 0.0002,
1458
+ "loss": 0.8021,
1459
+ "step": 1590
1460
+ },
1461
+ {
1462
+ "epoch": 0.51,
1463
+ "learning_rate": 0.0002,
1464
+ "loss": 0.793,
1465
+ "step": 1600
1466
+ },
1467
+ {
1468
+ "epoch": 0.51,
1469
+ "eval_loss": 0.7459111213684082,
1470
+ "eval_runtime": 111.062,
1471
+ "eval_samples_per_second": 9.004,
1472
+ "eval_steps_per_second": 4.502,
1473
+ "step": 1600
1474
+ },
1475
+ {
1476
+ "epoch": 0.51,
1477
+ "mmlu_eval_accuracy": 0.46888485292306403,
1478
+ "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
1479
+ "mmlu_eval_accuracy_anatomy": 0.7142857142857143,
1480
+ "mmlu_eval_accuracy_astronomy": 0.4375,
1481
+ "mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
1482
+ "mmlu_eval_accuracy_clinical_knowledge": 0.5517241379310345,
1483
+ "mmlu_eval_accuracy_college_biology": 0.4375,
1484
+ "mmlu_eval_accuracy_college_chemistry": 0.25,
1485
+ "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727,
1486
+ "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
1487
+ "mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
1488
+ "mmlu_eval_accuracy_college_physics": 0.2727272727272727,
1489
+ "mmlu_eval_accuracy_computer_security": 0.36363636363636365,
1490
+ "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
1491
+ "mmlu_eval_accuracy_econometrics": 0.16666666666666666,
1492
+ "mmlu_eval_accuracy_electrical_engineering": 0.3125,
1493
+ "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
1494
+ "mmlu_eval_accuracy_formal_logic": 0.07142857142857142,
1495
+ "mmlu_eval_accuracy_global_facts": 0.3,
1496
+ "mmlu_eval_accuracy_high_school_biology": 0.375,
1497
+ "mmlu_eval_accuracy_high_school_chemistry": 0.2727272727272727,
1498
+ "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
1499
+ "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666,
1500
+ "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636,
1501
+ "mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238,
1502
+ "mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744,
1503
+ "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
1504
+ "mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077,
1505
+ "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941,
1506
+ "mmlu_eval_accuracy_high_school_psychology": 0.8833333333333333,
1507
+ "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
1508
+ "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
1509
+ "mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923,
1510
+ "mmlu_eval_accuracy_human_aging": 0.7391304347826086,
1511
+ "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
1512
+ "mmlu_eval_accuracy_international_law": 0.8461538461538461,
1513
+ "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
1514
+ "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
1515
+ "mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
1516
+ "mmlu_eval_accuracy_management": 0.5454545454545454,
1517
+ "mmlu_eval_accuracy_marketing": 0.88,
1518
+ "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
1519
+ "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
1520
+ "mmlu_eval_accuracy_moral_disputes": 0.5,
1521
+ "mmlu_eval_accuracy_moral_scenarios": 0.24,
1522
+ "mmlu_eval_accuracy_nutrition": 0.6363636363636364,
1523
+ "mmlu_eval_accuracy_philosophy": 0.5,
1524
+ "mmlu_eval_accuracy_prehistory": 0.42857142857142855,
1525
+ "mmlu_eval_accuracy_professional_accounting": 0.41935483870967744,
1526
+ "mmlu_eval_accuracy_professional_law": 0.31176470588235294,
1527
+ "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935,
1528
+ "mmlu_eval_accuracy_professional_psychology": 0.4927536231884058,
1529
+ "mmlu_eval_accuracy_public_relations": 0.6666666666666666,
1530
+ "mmlu_eval_accuracy_security_studies": 0.48148148148148145,
1531
+ "mmlu_eval_accuracy_sociology": 0.5909090909090909,
1532
+ "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
1533
+ "mmlu_eval_accuracy_virology": 0.5555555555555556,
1534
+ "mmlu_eval_accuracy_world_religions": 0.6842105263157895,
1535
+ "mmlu_loss": 1.6951039852112453,
1536
+ "step": 1600
1537
+ },
1538
+ {
1539
+ "epoch": 0.51,
1540
+ "learning_rate": 0.0002,
1541
+ "loss": 0.7999,
1542
+ "step": 1610
1543
+ },
1544
+ {
1545
+ "epoch": 0.51,
1546
+ "learning_rate": 0.0002,
1547
+ "loss": 0.7959,
1548
+ "step": 1620
1549
+ },
1550
+ {
1551
+ "epoch": 0.52,
1552
+ "learning_rate": 0.0002,
1553
+ "loss": 0.7887,
1554
+ "step": 1630
1555
+ },
1556
+ {
1557
+ "epoch": 0.52,
1558
+ "learning_rate": 0.0002,
1559
+ "loss": 0.7186,
1560
+ "step": 1640
1561
+ },
1562
+ {
1563
+ "epoch": 0.52,
1564
+ "learning_rate": 0.0002,
1565
+ "loss": 0.8049,
1566
+ "step": 1650
1567
+ },
1568
+ {
1569
+ "epoch": 0.53,
1570
+ "learning_rate": 0.0002,
1571
+ "loss": 0.7934,
1572
+ "step": 1660
1573
+ },
1574
+ {
1575
+ "epoch": 0.53,
1576
+ "learning_rate": 0.0002,
1577
+ "loss": 0.8369,
1578
+ "step": 1670
1579
+ },
1580
+ {
1581
+ "epoch": 0.53,
1582
+ "learning_rate": 0.0002,
1583
+ "loss": 0.7567,
1584
+ "step": 1680
1585
+ },
1586
+ {
1587
+ "epoch": 0.54,
1588
+ "learning_rate": 0.0002,
1589
+ "loss": 0.8058,
1590
+ "step": 1690
1591
+ },
1592
+ {
1593
+ "epoch": 0.54,
1594
+ "learning_rate": 0.0002,
1595
+ "loss": 0.7818,
1596
+ "step": 1700
1597
+ },
1598
+ {
1599
+ "epoch": 0.54,
1600
+ "learning_rate": 0.0002,
1601
+ "loss": 0.7115,
1602
+ "step": 1710
1603
+ },
1604
+ {
1605
+ "epoch": 0.54,
1606
+ "learning_rate": 0.0002,
1607
+ "loss": 0.7434,
1608
+ "step": 1720
1609
+ },
1610
+ {
1611
+ "epoch": 0.55,
1612
+ "learning_rate": 0.0002,
1613
+ "loss": 0.7788,
1614
+ "step": 1730
1615
+ },
1616
+ {
1617
+ "epoch": 0.55,
1618
+ "learning_rate": 0.0002,
1619
+ "loss": 0.7824,
1620
+ "step": 1740
1621
+ },
1622
+ {
1623
+ "epoch": 0.55,
1624
+ "learning_rate": 0.0002,
1625
+ "loss": 0.7198,
1626
+ "step": 1750
1627
+ },
1628
+ {
1629
+ "epoch": 0.56,
1630
+ "learning_rate": 0.0002,
1631
+ "loss": 0.8059,
1632
+ "step": 1760
1633
+ },
1634
+ {
1635
+ "epoch": 0.56,
1636
+ "learning_rate": 0.0002,
1637
+ "loss": 0.7892,
1638
+ "step": 1770
1639
+ },
1640
+ {
1641
+ "epoch": 0.56,
1642
+ "learning_rate": 0.0002,
1643
+ "loss": 0.8048,
1644
+ "step": 1780
1645
+ },
1646
+ {
1647
+ "epoch": 0.57,
1648
+ "learning_rate": 0.0002,
1649
+ "loss": 0.7938,
1650
+ "step": 1790
1651
+ },
1652
+ {
1653
+ "epoch": 0.57,
1654
+ "learning_rate": 0.0002,
1655
+ "loss": 0.791,
1656
+ "step": 1800
1657
+ },
1658
+ {
1659
+ "epoch": 0.57,
1660
+ "eval_loss": 0.744739830493927,
1661
+ "eval_runtime": 111.1326,
1662
+ "eval_samples_per_second": 8.998,
1663
+ "eval_steps_per_second": 4.499,
1664
+ "step": 1800
1665
+ },
1666
+ {
1667
+ "epoch": 0.57,
1668
+ "mmlu_eval_accuracy": 0.4764276491893982,
1669
+ "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
1670
+ "mmlu_eval_accuracy_anatomy": 0.6428571428571429,
1671
+ "mmlu_eval_accuracy_astronomy": 0.4375,
1672
+ "mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
1673
+ "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
1674
+ "mmlu_eval_accuracy_college_biology": 0.4375,
1675
+ "mmlu_eval_accuracy_college_chemistry": 0.125,
1676
+ "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727,
1677
+ "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
1678
+ "mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
1679
+ "mmlu_eval_accuracy_college_physics": 0.36363636363636365,
1680
+ "mmlu_eval_accuracy_computer_security": 0.45454545454545453,
1681
+ "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
1682
+ "mmlu_eval_accuracy_econometrics": 0.16666666666666666,
1683
+ "mmlu_eval_accuracy_electrical_engineering": 0.25,
1684
+ "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
1685
+ "mmlu_eval_accuracy_formal_logic": 0.07142857142857142,
1686
+ "mmlu_eval_accuracy_global_facts": 0.3,
1687
+ "mmlu_eval_accuracy_high_school_biology": 0.375,
1688
+ "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182,
1689
+ "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
1690
+ "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
1691
+ "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636,
1692
+ "mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238,
1693
+ "mmlu_eval_accuracy_high_school_macroeconomics": 0.4883720930232558,
1694
+ "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
1695
+ "mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077,
1696
+ "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941,
1697
+ "mmlu_eval_accuracy_high_school_psychology": 0.9,
1698
+ "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
1699
+ "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
1700
+ "mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307,
1701
+ "mmlu_eval_accuracy_human_aging": 0.7391304347826086,
1702
+ "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
1703
+ "mmlu_eval_accuracy_international_law": 0.8461538461538461,
1704
+ "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
1705
+ "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666,
1706
+ "mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
1707
+ "mmlu_eval_accuracy_management": 0.6363636363636364,
1708
+ "mmlu_eval_accuracy_marketing": 0.88,
1709
+ "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
1710
+ "mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
1711
+ "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
1712
+ "mmlu_eval_accuracy_moral_scenarios": 0.24,
1713
+ "mmlu_eval_accuracy_nutrition": 0.6060606060606061,
1714
+ "mmlu_eval_accuracy_philosophy": 0.5882352941176471,
1715
+ "mmlu_eval_accuracy_prehistory": 0.42857142857142855,
1716
+ "mmlu_eval_accuracy_professional_accounting": 0.3870967741935484,
1717
+ "mmlu_eval_accuracy_professional_law": 0.3,
1718
+ "mmlu_eval_accuracy_professional_medicine": 0.6451612903225806,
1719
+ "mmlu_eval_accuracy_professional_psychology": 0.5072463768115942,
1720
+ "mmlu_eval_accuracy_public_relations": 0.6666666666666666,
1721
+ "mmlu_eval_accuracy_security_studies": 0.4444444444444444,
1722
+ "mmlu_eval_accuracy_sociology": 0.5909090909090909,
1723
+ "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273,
1724
+ "mmlu_eval_accuracy_virology": 0.5,
1725
+ "mmlu_eval_accuracy_world_religions": 0.7368421052631579,
1726
+ "mmlu_loss": 1.7224162761754218,
1727
+ "step": 1800
1728
+ },
1729
+ {
1730
+ "epoch": 0.57,
1731
+ "learning_rate": 0.0002,
1732
+ "loss": 0.7335,
1733
+ "step": 1810
1734
+ },
1735
+ {
1736
+ "epoch": 0.58,
1737
+ "learning_rate": 0.0002,
1738
+ "loss": 0.7762,
1739
+ "step": 1820
1740
+ },
1741
+ {
1742
+ "epoch": 0.58,
1743
+ "learning_rate": 0.0002,
1744
+ "loss": 0.75,
1745
+ "step": 1830
1746
+ },
1747
+ {
1748
+ "epoch": 0.58,
1749
+ "learning_rate": 0.0002,
1750
+ "loss": 0.7875,
1751
+ "step": 1840
1752
+ },
1753
+ {
1754
+ "epoch": 0.59,
1755
+ "learning_rate": 0.0002,
1756
+ "loss": 0.7749,
1757
+ "step": 1850
1758
+ },
1759
+ {
1760
+ "epoch": 0.59,
1761
+ "learning_rate": 0.0002,
1762
+ "loss": 0.8516,
1763
+ "step": 1860
1764
+ },
1765
+ {
1766
+ "epoch": 0.59,
1767
+ "learning_rate": 0.0002,
1768
+ "loss": 0.7729,
1769
+ "step": 1870
1770
+ },
1771
+ {
1772
+ "epoch": 0.6,
1773
+ "learning_rate": 0.0002,
1774
+ "loss": 0.7664,
1775
+ "step": 1880
1776
+ },
1777
+ {
1778
+ "epoch": 0.6,
1779
+ "learning_rate": 0.0002,
1780
+ "loss": 0.802,
1781
+ "step": 1890
1782
+ },
1783
+ {
1784
+ "epoch": 0.6,
1785
+ "learning_rate": 0.0002,
1786
+ "loss": 0.7791,
1787
+ "step": 1900
1788
+ },
1789
+ {
1790
+ "epoch": 0.61,
1791
+ "learning_rate": 0.0002,
1792
+ "loss": 0.8041,
1793
+ "step": 1910
1794
+ },
1795
+ {
1796
+ "epoch": 0.61,
1797
+ "learning_rate": 0.0002,
1798
+ "loss": 0.7671,
1799
+ "step": 1920
1800
+ },
1801
+ {
1802
+ "epoch": 0.61,
1803
+ "learning_rate": 0.0002,
1804
+ "loss": 0.7785,
1805
+ "step": 1930
1806
+ },
1807
+ {
1808
+ "epoch": 0.61,
1809
+ "learning_rate": 0.0002,
1810
+ "loss": 0.782,
1811
+ "step": 1940
1812
+ },
1813
+ {
1814
+ "epoch": 0.62,
1815
+ "learning_rate": 0.0002,
1816
+ "loss": 0.8032,
1817
+ "step": 1950
1818
+ },
1819
+ {
1820
+ "epoch": 0.62,
1821
+ "learning_rate": 0.0002,
1822
+ "loss": 0.8065,
1823
+ "step": 1960
1824
+ },
1825
+ {
1826
+ "epoch": 0.62,
1827
+ "learning_rate": 0.0002,
1828
+ "loss": 0.7713,
1829
+ "step": 1970
1830
+ },
1831
+ {
1832
+ "epoch": 0.63,
1833
+ "learning_rate": 0.0002,
1834
+ "loss": 0.7709,
1835
+ "step": 1980
1836
+ },
1837
+ {
1838
+ "epoch": 0.63,
1839
+ "learning_rate": 0.0002,
1840
+ "loss": 0.8036,
1841
+ "step": 1990
1842
+ },
1843
+ {
1844
+ "epoch": 0.63,
1845
+ "learning_rate": 0.0002,
1846
+ "loss": 0.7614,
1847
+ "step": 2000
1848
+ },
1849
+ {
1850
+ "epoch": 0.63,
1851
+ "eval_loss": 0.7417653799057007,
1852
+ "eval_runtime": 111.078,
1853
+ "eval_samples_per_second": 9.003,
1854
+ "eval_steps_per_second": 4.501,
1855
+ "step": 2000
1856
+ },
1857
+ {
1858
+ "epoch": 0.63,
1859
+ "mmlu_eval_accuracy": 0.4656871532254676,
1860
+ "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
1861
+ "mmlu_eval_accuracy_anatomy": 0.7142857142857143,
1862
+ "mmlu_eval_accuracy_astronomy": 0.375,
1863
+ "mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
1864
+ "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
1865
+ "mmlu_eval_accuracy_college_biology": 0.4375,
1866
+ "mmlu_eval_accuracy_college_chemistry": 0.25,
1867
+ "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
1868
+ "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
1869
+ "mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
1870
+ "mmlu_eval_accuracy_college_physics": 0.36363636363636365,
1871
+ "mmlu_eval_accuracy_computer_security": 0.2727272727272727,
1872
+ "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
1873
+ "mmlu_eval_accuracy_econometrics": 0.16666666666666666,
1874
+ "mmlu_eval_accuracy_electrical_engineering": 0.25,
1875
+ "mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
1876
+ "mmlu_eval_accuracy_formal_logic": 0.14285714285714285,
1877
+ "mmlu_eval_accuracy_global_facts": 0.5,
1878
+ "mmlu_eval_accuracy_high_school_biology": 0.40625,
1879
+ "mmlu_eval_accuracy_high_school_chemistry": 0.2727272727272727,
1880
+ "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
1881
+ "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
1882
+ "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
1883
+ "mmlu_eval_accuracy_high_school_government_and_politics": 0.47619047619047616,
1884
+ "mmlu_eval_accuracy_high_school_macroeconomics": 0.4418604651162791,
1885
+ "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
1886
+ "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
1887
+ "mmlu_eval_accuracy_high_school_physics": 0.23529411764705882,
1888
+ "mmlu_eval_accuracy_high_school_psychology": 0.8333333333333334,
1889
+ "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
1890
+ "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
1891
+ "mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923,
1892
+ "mmlu_eval_accuracy_human_aging": 0.6086956521739131,
1893
+ "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
1894
+ "mmlu_eval_accuracy_international_law": 0.9230769230769231,
1895
+ "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
1896
+ "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666,
1897
+ "mmlu_eval_accuracy_machine_learning": 0.09090909090909091,
1898
+ "mmlu_eval_accuracy_management": 0.6363636363636364,
1899
+ "mmlu_eval_accuracy_marketing": 0.76,
1900
+ "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
1901
+ "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
1902
+ "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
1903
+ "mmlu_eval_accuracy_moral_scenarios": 0.25,
1904
+ "mmlu_eval_accuracy_nutrition": 0.5757575757575758,
1905
+ "mmlu_eval_accuracy_philosophy": 0.5588235294117647,
1906
+ "mmlu_eval_accuracy_prehistory": 0.42857142857142855,
1907
+ "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903,
1908
+ "mmlu_eval_accuracy_professional_law": 0.3058823529411765,
1909
+ "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935,
1910
+ "mmlu_eval_accuracy_professional_psychology": 0.4927536231884058,
1911
+ "mmlu_eval_accuracy_public_relations": 0.6666666666666666,
1912
+ "mmlu_eval_accuracy_security_studies": 0.48148148148148145,
1913
+ "mmlu_eval_accuracy_sociology": 0.6363636363636364,
1914
+ "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
1915
+ "mmlu_eval_accuracy_virology": 0.5,
1916
+ "mmlu_eval_accuracy_world_religions": 0.631578947368421,
1917
+ "mmlu_loss": 1.632609389158204,
1918
+ "step": 2000
1919
+ },
1920
+ {
1921
+ "epoch": 0.64,
1922
+ "learning_rate": 0.0002,
1923
+ "loss": 0.8459,
1924
+ "step": 2010
1925
+ },
1926
+ {
1927
+ "epoch": 0.64,
1928
+ "learning_rate": 0.0002,
1929
+ "loss": 0.7348,
1930
+ "step": 2020
1931
+ },
1932
+ {
1933
+ "epoch": 0.64,
1934
+ "learning_rate": 0.0002,
1935
+ "loss": 0.811,
1936
+ "step": 2030
1937
+ },
1938
+ {
1939
+ "epoch": 0.65,
1940
+ "learning_rate": 0.0002,
1941
+ "loss": 0.7091,
1942
+ "step": 2040
1943
+ },
1944
+ {
1945
+ "epoch": 0.65,
1946
+ "learning_rate": 0.0002,
1947
+ "loss": 0.7715,
1948
+ "step": 2050
1949
+ },
1950
+ {
1951
+ "epoch": 0.65,
1952
+ "learning_rate": 0.0002,
1953
+ "loss": 0.8017,
1954
+ "step": 2060
1955
+ },
1956
+ {
1957
+ "epoch": 0.66,
1958
+ "learning_rate": 0.0002,
1959
+ "loss": 0.7734,
1960
+ "step": 2070
1961
+ },
1962
+ {
1963
+ "epoch": 0.66,
1964
+ "learning_rate": 0.0002,
1965
+ "loss": 0.8292,
1966
+ "step": 2080
1967
+ },
1968
+ {
1969
+ "epoch": 0.66,
1970
+ "learning_rate": 0.0002,
1971
+ "loss": 0.7873,
1972
+ "step": 2090
1973
+ },
1974
+ {
1975
+ "epoch": 0.67,
1976
+ "learning_rate": 0.0002,
1977
+ "loss": 0.757,
1978
+ "step": 2100
1979
+ },
1980
+ {
1981
+ "epoch": 0.67,
1982
+ "learning_rate": 0.0002,
1983
+ "loss": 0.7986,
1984
+ "step": 2110
1985
+ },
1986
+ {
1987
+ "epoch": 0.67,
1988
+ "learning_rate": 0.0002,
1989
+ "loss": 0.7848,
1990
+ "step": 2120
1991
+ },
1992
+ {
1993
+ "epoch": 0.67,
1994
+ "learning_rate": 0.0002,
1995
+ "loss": 0.7579,
1996
+ "step": 2130
1997
+ },
1998
+ {
1999
+ "epoch": 0.68,
2000
+ "learning_rate": 0.0002,
2001
+ "loss": 0.7683,
2002
+ "step": 2140
2003
+ },
2004
+ {
2005
+ "epoch": 0.68,
2006
+ "learning_rate": 0.0002,
2007
+ "loss": 0.7958,
2008
+ "step": 2150
2009
+ },
2010
+ {
2011
+ "epoch": 0.68,
2012
+ "learning_rate": 0.0002,
2013
+ "loss": 0.8009,
2014
+ "step": 2160
2015
+ },
2016
+ {
2017
+ "epoch": 0.69,
2018
+ "learning_rate": 0.0002,
2019
+ "loss": 0.7504,
2020
+ "step": 2170
2021
+ },
2022
+ {
2023
+ "epoch": 0.69,
2024
+ "learning_rate": 0.0002,
2025
+ "loss": 0.7558,
2026
+ "step": 2180
2027
+ },
2028
+ {
2029
+ "epoch": 0.69,
2030
+ "learning_rate": 0.0002,
2031
+ "loss": 0.7143,
2032
+ "step": 2190
2033
+ },
2034
+ {
2035
+ "epoch": 0.7,
2036
+ "learning_rate": 0.0002,
2037
+ "loss": 0.7767,
2038
+ "step": 2200
2039
+ },
2040
+ {
2041
+ "epoch": 0.7,
2042
+ "eval_loss": 0.7396783232688904,
2043
+ "eval_runtime": 111.0434,
2044
+ "eval_samples_per_second": 9.005,
2045
+ "eval_steps_per_second": 4.503,
2046
+ "step": 2200
2047
+ },
2048
+ {
2049
+ "epoch": 0.7,
2050
+ "mmlu_eval_accuracy": 0.48937488654796385,
2051
+ "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
2052
+ "mmlu_eval_accuracy_anatomy": 0.6428571428571429,
2053
+ "mmlu_eval_accuracy_astronomy": 0.4375,
2054
+ "mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
2055
+ "mmlu_eval_accuracy_clinical_knowledge": 0.5172413793103449,
2056
+ "mmlu_eval_accuracy_college_biology": 0.4375,
2057
+ "mmlu_eval_accuracy_college_chemistry": 0.25,
2058
+ "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
2059
+ "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
2060
+ "mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
2061
+ "mmlu_eval_accuracy_college_physics": 0.36363636363636365,
2062
+ "mmlu_eval_accuracy_computer_security": 0.36363636363636365,
2063
+ "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156,
2064
+ "mmlu_eval_accuracy_econometrics": 0.16666666666666666,
2065
+ "mmlu_eval_accuracy_electrical_engineering": 0.3125,
2066
+ "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
2067
+ "mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
2068
+ "mmlu_eval_accuracy_global_facts": 0.4,
2069
+ "mmlu_eval_accuracy_high_school_biology": 0.375,
2070
+ "mmlu_eval_accuracy_high_school_chemistry": 0.18181818181818182,
2071
+ "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
2072
+ "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
2073
+ "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636,
2074
+ "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714,
2075
+ "mmlu_eval_accuracy_high_school_macroeconomics": 0.4883720930232558,
2076
+ "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
2077
+ "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
2078
+ "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941,
2079
+ "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667,
2080
+ "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
2081
+ "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
2082
+ "mmlu_eval_accuracy_high_school_world_history": 0.6538461538461539,
2083
+ "mmlu_eval_accuracy_human_aging": 0.7391304347826086,
2084
+ "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
2085
+ "mmlu_eval_accuracy_international_law": 0.8461538461538461,
2086
+ "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
2087
+ "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
2088
+ "mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
2089
+ "mmlu_eval_accuracy_management": 0.6363636363636364,
2090
+ "mmlu_eval_accuracy_marketing": 0.88,
2091
+ "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
2092
+ "mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
2093
+ "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
2094
+ "mmlu_eval_accuracy_moral_scenarios": 0.24,
2095
+ "mmlu_eval_accuracy_nutrition": 0.6363636363636364,
2096
+ "mmlu_eval_accuracy_philosophy": 0.5,
2097
+ "mmlu_eval_accuracy_prehistory": 0.4,
2098
+ "mmlu_eval_accuracy_professional_accounting": 0.3870967741935484,
2099
+ "mmlu_eval_accuracy_professional_law": 0.3058823529411765,
2100
+ "mmlu_eval_accuracy_professional_medicine": 0.6129032258064516,
2101
+ "mmlu_eval_accuracy_professional_psychology": 0.5072463768115942,
2102
+ "mmlu_eval_accuracy_public_relations": 0.5,
2103
+ "mmlu_eval_accuracy_security_studies": 0.48148148148148145,
2104
+ "mmlu_eval_accuracy_sociology": 0.6818181818181818,
2105
+ "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273,
2106
+ "mmlu_eval_accuracy_virology": 0.5555555555555556,
2107
+ "mmlu_eval_accuracy_world_religions": 0.7894736842105263,
2108
+ "mmlu_loss": 1.464440327400327,
2109
+ "step": 2200
2110
+ },
2111
+ {
2112
+ "epoch": 0.7,
2113
+ "learning_rate": 0.0002,
2114
+ "loss": 0.7848,
2115
+ "step": 2210
2116
+ },
2117
+ {
2118
+ "epoch": 0.7,
2119
+ "learning_rate": 0.0002,
2120
+ "loss": 0.7864,
2121
+ "step": 2220
2122
+ },
2123
+ {
2124
+ "epoch": 0.71,
2125
+ "learning_rate": 0.0002,
2126
+ "loss": 0.7609,
2127
+ "step": 2230
2128
+ },
2129
+ {
2130
+ "epoch": 0.71,
2131
+ "learning_rate": 0.0002,
2132
+ "loss": 0.7782,
2133
+ "step": 2240
2134
+ },
2135
+ {
2136
+ "epoch": 0.71,
2137
+ "learning_rate": 0.0002,
2138
+ "loss": 0.7825,
2139
+ "step": 2250
2140
+ },
2141
+ {
2142
+ "epoch": 0.72,
2143
+ "learning_rate": 0.0002,
2144
+ "loss": 0.85,
2145
+ "step": 2260
2146
+ },
2147
+ {
2148
+ "epoch": 0.72,
2149
+ "learning_rate": 0.0002,
2150
+ "loss": 0.7802,
2151
+ "step": 2270
2152
+ },
2153
+ {
2154
+ "epoch": 0.72,
2155
+ "learning_rate": 0.0002,
2156
+ "loss": 0.7715,
2157
+ "step": 2280
2158
+ },
2159
+ {
2160
+ "epoch": 0.73,
2161
+ "learning_rate": 0.0002,
2162
+ "loss": 0.8032,
2163
+ "step": 2290
2164
+ },
2165
+ {
2166
+ "epoch": 0.73,
2167
+ "learning_rate": 0.0002,
2168
+ "loss": 0.854,
2169
+ "step": 2300
2170
+ },
2171
+ {
2172
+ "epoch": 0.73,
2173
+ "learning_rate": 0.0002,
2174
+ "loss": 0.8123,
2175
+ "step": 2310
2176
+ },
2177
+ {
2178
+ "epoch": 0.74,
2179
+ "learning_rate": 0.0002,
2180
+ "loss": 0.8101,
2181
+ "step": 2320
2182
+ },
2183
+ {
2184
+ "epoch": 0.74,
2185
+ "learning_rate": 0.0002,
2186
+ "loss": 0.8075,
2187
+ "step": 2330
2188
+ },
2189
+ {
2190
+ "epoch": 0.74,
2191
+ "learning_rate": 0.0002,
2192
+ "loss": 0.817,
2193
+ "step": 2340
2194
+ },
2195
+ {
2196
+ "epoch": 0.74,
2197
+ "learning_rate": 0.0002,
2198
+ "loss": 0.7747,
2199
+ "step": 2350
2200
+ },
2201
+ {
2202
+ "epoch": 0.75,
2203
+ "learning_rate": 0.0002,
2204
+ "loss": 0.8012,
2205
+ "step": 2360
2206
+ },
2207
+ {
2208
+ "epoch": 0.75,
2209
+ "learning_rate": 0.0002,
2210
+ "loss": 0.7893,
2211
+ "step": 2370
2212
+ },
2213
+ {
2214
+ "epoch": 0.75,
2215
+ "learning_rate": 0.0002,
2216
+ "loss": 0.7661,
2217
+ "step": 2380
2218
+ },
2219
+ {
2220
+ "epoch": 0.76,
2221
+ "learning_rate": 0.0002,
2222
+ "loss": 0.7711,
2223
+ "step": 2390
2224
+ },
2225
+ {
2226
+ "epoch": 0.76,
2227
+ "learning_rate": 0.0002,
2228
+ "loss": 0.8136,
2229
+ "step": 2400
2230
+ },
2231
+ {
2232
+ "epoch": 0.76,
2233
+ "eval_loss": 0.7395493388175964,
2234
+ "eval_runtime": 110.7923,
2235
+ "eval_samples_per_second": 9.026,
2236
+ "eval_steps_per_second": 4.513,
2237
+ "step": 2400
2238
+ },
2239
+ {
2240
+ "epoch": 0.76,
2241
+ "mmlu_eval_accuracy": 0.4873047408851529,
2242
+ "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
2243
+ "mmlu_eval_accuracy_anatomy": 0.7142857142857143,
2244
+ "mmlu_eval_accuracy_astronomy": 0.4375,
2245
+ "mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
2246
+ "mmlu_eval_accuracy_clinical_knowledge": 0.5172413793103449,
2247
+ "mmlu_eval_accuracy_college_biology": 0.4375,
2248
+ "mmlu_eval_accuracy_college_chemistry": 0.25,
2249
+ "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
2250
+ "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
2251
+ "mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
2252
+ "mmlu_eval_accuracy_college_physics": 0.2727272727272727,
2253
+ "mmlu_eval_accuracy_computer_security": 0.36363636363636365,
2254
+ "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
2255
+ "mmlu_eval_accuracy_econometrics": 0.16666666666666666,
2256
+ "mmlu_eval_accuracy_electrical_engineering": 0.3125,
2257
+ "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
2258
+ "mmlu_eval_accuracy_formal_logic": 0.07142857142857142,
2259
+ "mmlu_eval_accuracy_global_facts": 0.4,
2260
+ "mmlu_eval_accuracy_high_school_biology": 0.40625,
2261
+ "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727,
2262
+ "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
2263
+ "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
2264
+ "mmlu_eval_accuracy_high_school_geography": 0.9090909090909091,
2265
+ "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714,
2266
+ "mmlu_eval_accuracy_high_school_macroeconomics": 0.4418604651162791,
2267
+ "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
2268
+ "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
2269
+ "mmlu_eval_accuracy_high_school_physics": 0.058823529411764705,
2270
+ "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667,
2271
+ "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
2272
+ "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
2273
+ "mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307,
2274
+ "mmlu_eval_accuracy_human_aging": 0.7391304347826086,
2275
+ "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
2276
+ "mmlu_eval_accuracy_international_law": 0.8461538461538461,
2277
+ "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
2278
+ "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
2279
+ "mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
2280
+ "mmlu_eval_accuracy_management": 0.6363636363636364,
2281
+ "mmlu_eval_accuracy_marketing": 0.88,
2282
+ "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
2283
+ "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
2284
+ "mmlu_eval_accuracy_moral_disputes": 0.5,
2285
+ "mmlu_eval_accuracy_moral_scenarios": 0.24,
2286
+ "mmlu_eval_accuracy_nutrition": 0.6363636363636364,
2287
+ "mmlu_eval_accuracy_philosophy": 0.5294117647058824,
2288
+ "mmlu_eval_accuracy_prehistory": 0.4,
2289
+ "mmlu_eval_accuracy_professional_accounting": 0.41935483870967744,
2290
+ "mmlu_eval_accuracy_professional_law": 0.3235294117647059,
2291
+ "mmlu_eval_accuracy_professional_medicine": 0.5806451612903226,
2292
+ "mmlu_eval_accuracy_professional_psychology": 0.5072463768115942,
2293
+ "mmlu_eval_accuracy_public_relations": 0.6666666666666666,
2294
+ "mmlu_eval_accuracy_security_studies": 0.48148148148148145,
2295
+ "mmlu_eval_accuracy_sociology": 0.6818181818181818,
2296
+ "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
2297
+ "mmlu_eval_accuracy_virology": 0.5555555555555556,
2298
+ "mmlu_eval_accuracy_world_religions": 0.7368421052631579,
2299
+ "mmlu_loss": 1.3917097181237397,
2300
+ "step": 2400
2301
+ },
2302
+ {
2303
+ "epoch": 0.76,
2304
+ "learning_rate": 0.0002,
2305
+ "loss": 0.7579,
2306
+ "step": 2410
2307
+ },
2308
+ {
2309
+ "epoch": 0.77,
2310
+ "learning_rate": 0.0002,
2311
+ "loss": 0.8421,
2312
+ "step": 2420
2313
+ },
2314
+ {
2315
+ "epoch": 0.77,
2316
+ "learning_rate": 0.0002,
2317
+ "loss": 0.7957,
2318
+ "step": 2430
2319
+ },
2320
+ {
2321
+ "epoch": 0.77,
2322
+ "learning_rate": 0.0002,
2323
+ "loss": 0.7452,
2324
+ "step": 2440
2325
+ },
2326
+ {
2327
+ "epoch": 0.78,
2328
+ "learning_rate": 0.0002,
2329
+ "loss": 0.8478,
2330
+ "step": 2450
2331
+ },
2332
+ {
2333
+ "epoch": 0.78,
2334
+ "learning_rate": 0.0002,
2335
+ "loss": 0.8443,
2336
+ "step": 2460
2337
+ },
2338
+ {
2339
+ "epoch": 0.78,
2340
+ "learning_rate": 0.0002,
2341
+ "loss": 0.8409,
2342
+ "step": 2470
2343
+ },
2344
+ {
2345
+ "epoch": 0.79,
2346
+ "learning_rate": 0.0002,
2347
+ "loss": 0.8168,
2348
+ "step": 2480
2349
+ },
2350
+ {
2351
+ "epoch": 0.79,
2352
+ "learning_rate": 0.0002,
2353
+ "loss": 0.7648,
2354
+ "step": 2490
2355
+ },
2356
+ {
2357
+ "epoch": 0.79,
2358
+ "learning_rate": 0.0002,
2359
+ "loss": 0.7938,
2360
+ "step": 2500
2361
+ },
2362
+ {
2363
+ "epoch": 0.8,
2364
+ "learning_rate": 0.0002,
2365
+ "loss": 0.791,
2366
+ "step": 2510
2367
+ },
2368
+ {
2369
+ "epoch": 0.8,
2370
+ "learning_rate": 0.0002,
2371
+ "loss": 0.7691,
2372
+ "step": 2520
2373
+ },
2374
+ {
2375
+ "epoch": 0.8,
2376
+ "learning_rate": 0.0002,
2377
+ "loss": 0.7648,
2378
+ "step": 2530
2379
+ },
2380
+ {
2381
+ "epoch": 0.8,
2382
+ "learning_rate": 0.0002,
2383
+ "loss": 0.7575,
2384
+ "step": 2540
2385
+ },
2386
+ {
2387
+ "epoch": 0.81,
2388
+ "learning_rate": 0.0002,
2389
+ "loss": 0.7797,
2390
+ "step": 2550
2391
+ },
2392
+ {
2393
+ "epoch": 0.81,
2394
+ "learning_rate": 0.0002,
2395
+ "loss": 0.7742,
2396
+ "step": 2560
2397
+ },
2398
+ {
2399
+ "epoch": 0.81,
2400
+ "learning_rate": 0.0002,
2401
+ "loss": 0.8391,
2402
+ "step": 2570
2403
+ },
2404
+ {
2405
+ "epoch": 0.82,
2406
+ "learning_rate": 0.0002,
2407
+ "loss": 0.7746,
2408
+ "step": 2580
2409
+ },
2410
+ {
2411
+ "epoch": 0.82,
2412
+ "learning_rate": 0.0002,
2413
+ "loss": 0.7534,
2414
+ "step": 2590
2415
+ },
2416
+ {
2417
+ "epoch": 0.82,
2418
+ "learning_rate": 0.0002,
2419
+ "loss": 0.7395,
2420
+ "step": 2600
2421
+ },
2422
+ {
2423
+ "epoch": 0.82,
2424
+ "eval_loss": 0.7380212545394897,
2425
+ "eval_runtime": 111.0553,
2426
+ "eval_samples_per_second": 9.005,
2427
+ "eval_steps_per_second": 4.502,
2428
+ "step": 2600
2429
+ },
2430
+ {
2431
+ "epoch": 0.82,
2432
+ "mmlu_eval_accuracy": 0.4979448031756729,
2433
+ "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
2434
+ "mmlu_eval_accuracy_anatomy": 0.7142857142857143,
2435
+ "mmlu_eval_accuracy_astronomy": 0.4375,
2436
+ "mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
2437
+ "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
2438
+ "mmlu_eval_accuracy_college_biology": 0.5,
2439
+ "mmlu_eval_accuracy_college_chemistry": 0.25,
2440
+ "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727,
2441
+ "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
2442
+ "mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
2443
+ "mmlu_eval_accuracy_college_physics": 0.45454545454545453,
2444
+ "mmlu_eval_accuracy_computer_security": 0.36363636363636365,
2445
+ "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
2446
+ "mmlu_eval_accuracy_econometrics": 0.16666666666666666,
2447
+ "mmlu_eval_accuracy_electrical_engineering": 0.25,
2448
+ "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
2449
+ "mmlu_eval_accuracy_formal_logic": 0.14285714285714285,
2450
+ "mmlu_eval_accuracy_global_facts": 0.4,
2451
+ "mmlu_eval_accuracy_high_school_biology": 0.40625,
2452
+ "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727,
2453
+ "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
2454
+ "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
2455
+ "mmlu_eval_accuracy_high_school_geography": 0.9090909090909091,
2456
+ "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
2457
+ "mmlu_eval_accuracy_high_school_macroeconomics": 0.5116279069767442,
2458
+ "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
2459
+ "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
2460
+ "mmlu_eval_accuracy_high_school_physics": 0.058823529411764705,
2461
+ "mmlu_eval_accuracy_high_school_psychology": 0.8833333333333333,
2462
+ "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
2463
+ "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
2464
+ "mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923,
2465
+ "mmlu_eval_accuracy_human_aging": 0.7391304347826086,
2466
+ "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
2467
+ "mmlu_eval_accuracy_international_law": 0.9230769230769231,
2468
+ "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
2469
+ "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666,
2470
+ "mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
2471
+ "mmlu_eval_accuracy_management": 0.6363636363636364,
2472
+ "mmlu_eval_accuracy_marketing": 0.88,
2473
+ "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
2474
+ "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
2475
+ "mmlu_eval_accuracy_moral_disputes": 0.5263157894736842,
2476
+ "mmlu_eval_accuracy_moral_scenarios": 0.24,
2477
+ "mmlu_eval_accuracy_nutrition": 0.6363636363636364,
2478
+ "mmlu_eval_accuracy_philosophy": 0.5294117647058824,
2479
+ "mmlu_eval_accuracy_prehistory": 0.45714285714285713,
2480
+ "mmlu_eval_accuracy_professional_accounting": 0.45161290322580644,
2481
+ "mmlu_eval_accuracy_professional_law": 0.34705882352941175,
2482
+ "mmlu_eval_accuracy_professional_medicine": 0.6451612903225806,
2483
+ "mmlu_eval_accuracy_professional_psychology": 0.5217391304347826,
2484
+ "mmlu_eval_accuracy_public_relations": 0.6666666666666666,
2485
+ "mmlu_eval_accuracy_security_studies": 0.5185185185185185,
2486
+ "mmlu_eval_accuracy_sociology": 0.6818181818181818,
2487
+ "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
2488
+ "mmlu_eval_accuracy_virology": 0.5555555555555556,
2489
+ "mmlu_eval_accuracy_world_religions": 0.6842105263157895,
2490
+ "mmlu_loss": 1.3912735815614696,
2491
+ "step": 2600
2492
+ },
2493
+ {
2494
+ "epoch": 0.83,
2495
+ "learning_rate": 0.0002,
2496
+ "loss": 0.7792,
2497
+ "step": 2610
2498
+ },
2499
+ {
2500
+ "epoch": 0.83,
2501
+ "learning_rate": 0.0002,
2502
+ "loss": 0.7228,
2503
+ "step": 2620
2504
+ },
2505
+ {
2506
+ "epoch": 0.83,
2507
+ "learning_rate": 0.0002,
2508
+ "loss": 0.7294,
2509
+ "step": 2630
2510
+ },
2511
+ {
2512
+ "epoch": 0.84,
2513
+ "learning_rate": 0.0002,
2514
+ "loss": 0.6968,
2515
+ "step": 2640
2516
+ },
2517
+ {
2518
+ "epoch": 0.84,
2519
+ "learning_rate": 0.0002,
2520
+ "loss": 0.7463,
2521
+ "step": 2650
2522
+ },
2523
+ {
2524
+ "epoch": 0.84,
2525
+ "learning_rate": 0.0002,
2526
+ "loss": 0.7588,
2527
+ "step": 2660
2528
+ },
2529
+ {
2530
+ "epoch": 0.85,
2531
+ "learning_rate": 0.0002,
2532
+ "loss": 0.7406,
2533
+ "step": 2670
2534
+ },
2535
+ {
2536
+ "epoch": 0.85,
2537
+ "learning_rate": 0.0002,
2538
+ "loss": 0.7817,
2539
+ "step": 2680
2540
+ },
2541
+ {
2542
+ "epoch": 0.85,
2543
+ "learning_rate": 0.0002,
2544
+ "loss": 0.808,
2545
+ "step": 2690
2546
+ },
2547
+ {
2548
+ "epoch": 0.86,
2549
+ "learning_rate": 0.0002,
2550
+ "loss": 0.771,
2551
+ "step": 2700
2552
+ },
2553
+ {
2554
+ "epoch": 0.86,
2555
+ "learning_rate": 0.0002,
2556
+ "loss": 0.7678,
2557
+ "step": 2710
2558
+ },
2559
+ {
2560
+ "epoch": 0.86,
2561
+ "learning_rate": 0.0002,
2562
+ "loss": 0.7885,
2563
+ "step": 2720
2564
+ },
2565
+ {
2566
+ "epoch": 0.87,
2567
+ "learning_rate": 0.0002,
2568
+ "loss": 0.8297,
2569
+ "step": 2730
2570
+ },
2571
+ {
2572
+ "epoch": 0.87,
2573
+ "learning_rate": 0.0002,
2574
+ "loss": 0.8218,
2575
+ "step": 2740
2576
+ },
2577
+ {
2578
+ "epoch": 0.87,
2579
+ "learning_rate": 0.0002,
2580
+ "loss": 0.7742,
2581
+ "step": 2750
2582
+ },
2583
+ {
2584
+ "epoch": 0.87,
2585
+ "learning_rate": 0.0002,
2586
+ "loss": 0.7512,
2587
+ "step": 2760
2588
+ },
2589
+ {
2590
+ "epoch": 0.88,
2591
+ "learning_rate": 0.0002,
2592
+ "loss": 0.7508,
2593
+ "step": 2770
2594
+ },
2595
+ {
2596
+ "epoch": 0.88,
2597
+ "learning_rate": 0.0002,
2598
+ "loss": 0.7947,
2599
+ "step": 2780
2600
+ },
2601
+ {
2602
+ "epoch": 0.88,
2603
+ "learning_rate": 0.0002,
2604
+ "loss": 0.7399,
2605
+ "step": 2790
2606
+ },
2607
+ {
2608
+ "epoch": 0.89,
2609
+ "learning_rate": 0.0002,
2610
+ "loss": 0.7589,
2611
+ "step": 2800
2612
+ },
2613
+ {
2614
+ "epoch": 0.89,
2615
+ "eval_loss": 0.7355720400810242,
2616
+ "eval_runtime": 110.8718,
2617
+ "eval_samples_per_second": 9.019,
2618
+ "eval_steps_per_second": 4.51,
2619
+ "step": 2800
2620
+ },
2621
+ {
2622
+ "epoch": 0.89,
2623
+ "mmlu_eval_accuracy": 0.48346048137181885,
2624
+ "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
2625
+ "mmlu_eval_accuracy_anatomy": 0.7142857142857143,
2626
+ "mmlu_eval_accuracy_astronomy": 0.4375,
2627
+ "mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
2628
+ "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
2629
+ "mmlu_eval_accuracy_college_biology": 0.5,
2630
+ "mmlu_eval_accuracy_college_chemistry": 0.25,
2631
+ "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727,
2632
+ "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
2633
+ "mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
2634
+ "mmlu_eval_accuracy_college_physics": 0.36363636363636365,
2635
+ "mmlu_eval_accuracy_computer_security": 0.36363636363636365,
2636
+ "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
2637
+ "mmlu_eval_accuracy_econometrics": 0.16666666666666666,
2638
+ "mmlu_eval_accuracy_electrical_engineering": 0.25,
2639
+ "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244,
2640
+ "mmlu_eval_accuracy_formal_logic": 0.14285714285714285,
2641
+ "mmlu_eval_accuracy_global_facts": 0.3,
2642
+ "mmlu_eval_accuracy_high_school_biology": 0.375,
2643
+ "mmlu_eval_accuracy_high_school_chemistry": 0.2727272727272727,
2644
+ "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
2645
+ "mmlu_eval_accuracy_high_school_european_history": 0.7222222222222222,
2646
+ "mmlu_eval_accuracy_high_school_geography": 0.9090909090909091,
2647
+ "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
2648
+ "mmlu_eval_accuracy_high_school_macroeconomics": 0.4186046511627907,
2649
+ "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
2650
+ "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
2651
+ "mmlu_eval_accuracy_high_school_physics": 0.17647058823529413,
2652
+ "mmlu_eval_accuracy_high_school_psychology": 0.8833333333333333,
2653
+ "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
2654
+ "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
2655
+ "mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307,
2656
+ "mmlu_eval_accuracy_human_aging": 0.7391304347826086,
2657
+ "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
2658
+ "mmlu_eval_accuracy_international_law": 0.8461538461538461,
2659
+ "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
2660
+ "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
2661
+ "mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
2662
+ "mmlu_eval_accuracy_management": 0.7272727272727273,
2663
+ "mmlu_eval_accuracy_marketing": 0.84,
2664
+ "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
2665
+ "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
2666
+ "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
2667
+ "mmlu_eval_accuracy_moral_scenarios": 0.24,
2668
+ "mmlu_eval_accuracy_nutrition": 0.696969696969697,
2669
+ "mmlu_eval_accuracy_philosophy": 0.47058823529411764,
2670
+ "mmlu_eval_accuracy_prehistory": 0.42857142857142855,
2671
+ "mmlu_eval_accuracy_professional_accounting": 0.45161290322580644,
2672
+ "mmlu_eval_accuracy_professional_law": 0.3058823529411765,
2673
+ "mmlu_eval_accuracy_professional_medicine": 0.5806451612903226,
2674
+ "mmlu_eval_accuracy_professional_psychology": 0.5362318840579711,
2675
+ "mmlu_eval_accuracy_public_relations": 0.5,
2676
+ "mmlu_eval_accuracy_security_studies": 0.48148148148148145,
2677
+ "mmlu_eval_accuracy_sociology": 0.6818181818181818,
2678
+ "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
2679
+ "mmlu_eval_accuracy_virology": 0.5555555555555556,
2680
+ "mmlu_eval_accuracy_world_religions": 0.7368421052631579,
2681
+ "mmlu_loss": 1.3572583458831353,
2682
+ "step": 2800
2683
+ },
2684
+ {
2685
+ "epoch": 0.89,
2686
+ "learning_rate": 0.0002,
2687
+ "loss": 0.8099,
2688
+ "step": 2810
2689
+ },
2690
+ {
2691
+ "epoch": 0.89,
2692
+ "learning_rate": 0.0002,
2693
+ "loss": 0.7303,
2694
+ "step": 2820
2695
+ },
2696
+ {
2697
+ "epoch": 0.9,
2698
+ "learning_rate": 0.0002,
2699
+ "loss": 0.8154,
2700
+ "step": 2830
2701
+ },
2702
+ {
2703
+ "epoch": 0.9,
2704
+ "learning_rate": 0.0002,
2705
+ "loss": 0.8166,
2706
+ "step": 2840
2707
+ },
2708
+ {
2709
+ "epoch": 0.9,
2710
+ "learning_rate": 0.0002,
2711
+ "loss": 0.7425,
2712
+ "step": 2850
2713
+ },
2714
+ {
2715
+ "epoch": 0.91,
2716
+ "learning_rate": 0.0002,
2717
+ "loss": 0.8223,
2718
+ "step": 2860
2719
+ },
2720
+ {
2721
+ "epoch": 0.91,
2722
+ "learning_rate": 0.0002,
2723
+ "loss": 0.7443,
2724
+ "step": 2870
2725
+ },
2726
+ {
2727
+ "epoch": 0.91,
2728
+ "learning_rate": 0.0002,
2729
+ "loss": 0.7733,
2730
+ "step": 2880
2731
+ },
2732
+ {
2733
+ "epoch": 0.92,
2734
+ "learning_rate": 0.0002,
2735
+ "loss": 0.8092,
2736
+ "step": 2890
2737
+ },
2738
+ {
2739
+ "epoch": 0.92,
2740
+ "learning_rate": 0.0002,
2741
+ "loss": 0.7371,
2742
+ "step": 2900
2743
+ },
2744
+ {
2745
+ "epoch": 0.92,
2746
+ "learning_rate": 0.0002,
2747
+ "loss": 0.7323,
2748
+ "step": 2910
2749
+ },
2750
+ {
2751
+ "epoch": 0.93,
2752
+ "learning_rate": 0.0002,
2753
+ "loss": 0.7716,
2754
+ "step": 2920
2755
+ },
2756
+ {
2757
+ "epoch": 0.93,
2758
+ "learning_rate": 0.0002,
2759
+ "loss": 0.7824,
2760
+ "step": 2930
2761
+ },
2762
+ {
2763
+ "epoch": 0.93,
2764
+ "learning_rate": 0.0002,
2765
+ "loss": 0.7373,
2766
+ "step": 2940
2767
+ },
2768
+ {
2769
+ "epoch": 0.93,
2770
+ "learning_rate": 0.0002,
2771
+ "loss": 0.7384,
2772
+ "step": 2950
2773
+ },
2774
+ {
2775
+ "epoch": 0.94,
2776
+ "learning_rate": 0.0002,
2777
+ "loss": 0.7598,
2778
+ "step": 2960
2779
+ },
2780
+ {
2781
+ "epoch": 0.94,
2782
+ "learning_rate": 0.0002,
2783
+ "loss": 0.7211,
2784
+ "step": 2970
2785
+ },
2786
+ {
2787
+ "epoch": 0.94,
2788
+ "learning_rate": 0.0002,
2789
+ "loss": 0.7886,
2790
+ "step": 2980
2791
+ },
2792
+ {
2793
+ "epoch": 0.95,
2794
+ "learning_rate": 0.0002,
2795
+ "loss": 0.8107,
2796
+ "step": 2990
2797
+ },
2798
+ {
2799
+ "epoch": 0.95,
2800
+ "learning_rate": 0.0002,
2801
+ "loss": 0.8389,
2802
+ "step": 3000
2803
+ },
2804
+ {
2805
+ "epoch": 0.95,
2806
+ "eval_loss": 0.7343361377716064,
2807
+ "eval_runtime": 110.9061,
2808
+ "eval_samples_per_second": 9.017,
2809
+ "eval_steps_per_second": 4.508,
2810
+ "step": 3000
2811
+ },
2812
+ {
2813
+ "epoch": 0.95,
2814
+ "mmlu_eval_accuracy": 0.5003901788212859,
2815
+ "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
2816
+ "mmlu_eval_accuracy_anatomy": 0.7142857142857143,
2817
+ "mmlu_eval_accuracy_astronomy": 0.375,
2818
+ "mmlu_eval_accuracy_business_ethics": 0.45454545454545453,
2819
+ "mmlu_eval_accuracy_clinical_knowledge": 0.5517241379310345,
2820
+ "mmlu_eval_accuracy_college_biology": 0.4375,
2821
+ "mmlu_eval_accuracy_college_chemistry": 0.25,
2822
+ "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727,
2823
+ "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
2824
+ "mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
2825
+ "mmlu_eval_accuracy_college_physics": 0.36363636363636365,
2826
+ "mmlu_eval_accuracy_computer_security": 0.5454545454545454,
2827
+ "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
2828
+ "mmlu_eval_accuracy_econometrics": 0.25,
2829
+ "mmlu_eval_accuracy_electrical_engineering": 0.25,
2830
+ "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244,
2831
+ "mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
2832
+ "mmlu_eval_accuracy_global_facts": 0.5,
2833
+ "mmlu_eval_accuracy_high_school_biology": 0.53125,
2834
+ "mmlu_eval_accuracy_high_school_chemistry": 0.18181818181818182,
2835
+ "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
2836
+ "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666,
2837
+ "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636,
2838
+ "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
2839
+ "mmlu_eval_accuracy_high_school_macroeconomics": 0.4186046511627907,
2840
+ "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
2841
+ "mmlu_eval_accuracy_high_school_microeconomics": 0.5,
2842
+ "mmlu_eval_accuracy_high_school_physics": 0.17647058823529413,
2843
+ "mmlu_eval_accuracy_high_school_psychology": 0.8833333333333333,
2844
+ "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
2845
+ "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
2846
+ "mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307,
2847
+ "mmlu_eval_accuracy_human_aging": 0.7391304347826086,
2848
+ "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
2849
+ "mmlu_eval_accuracy_international_law": 0.8461538461538461,
2850
+ "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
2851
+ "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666,
2852
+ "mmlu_eval_accuracy_machine_learning": 0.36363636363636365,
2853
+ "mmlu_eval_accuracy_management": 0.6363636363636364,
2854
+ "mmlu_eval_accuracy_marketing": 0.84,
2855
+ "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
2856
+ "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
2857
+ "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
2858
+ "mmlu_eval_accuracy_moral_scenarios": 0.22,
2859
+ "mmlu_eval_accuracy_nutrition": 0.6363636363636364,
2860
+ "mmlu_eval_accuracy_philosophy": 0.5,
2861
+ "mmlu_eval_accuracy_prehistory": 0.5714285714285714,
2862
+ "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194,
2863
+ "mmlu_eval_accuracy_professional_law": 0.35294117647058826,
2864
+ "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935,
2865
+ "mmlu_eval_accuracy_professional_psychology": 0.4927536231884058,
2866
+ "mmlu_eval_accuracy_public_relations": 0.5833333333333334,
2867
+ "mmlu_eval_accuracy_security_studies": 0.4444444444444444,
2868
+ "mmlu_eval_accuracy_sociology": 0.7272727272727273,
2869
+ "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
2870
+ "mmlu_eval_accuracy_virology": 0.5555555555555556,
2871
+ "mmlu_eval_accuracy_world_religions": 0.7368421052631579,
2872
+ "mmlu_loss": 1.217419229584014,
2873
+ "step": 3000
2874
+ },
2875
+ {
2876
+ "epoch": 0.95,
2877
+ "learning_rate": 0.0002,
2878
+ "loss": 0.7964,
2879
+ "step": 3010
2880
+ },
2881
+ {
2882
+ "epoch": 0.96,
2883
+ "learning_rate": 0.0002,
2884
+ "loss": 0.7841,
2885
+ "step": 3020
2886
+ },
2887
+ {
2888
+ "epoch": 0.96,
2889
+ "learning_rate": 0.0002,
2890
+ "loss": 0.7951,
2891
+ "step": 3030
2892
+ },
2893
+ {
2894
+ "epoch": 0.96,
2895
+ "learning_rate": 0.0002,
2896
+ "loss": 0.7523,
2897
+ "step": 3040
2898
+ },
2899
+ {
2900
+ "epoch": 0.97,
2901
+ "learning_rate": 0.0002,
2902
+ "loss": 0.7729,
2903
+ "step": 3050
2904
+ },
2905
+ {
2906
+ "epoch": 0.97,
2907
+ "learning_rate": 0.0002,
2908
+ "loss": 0.705,
2909
+ "step": 3060
2910
+ },
2911
+ {
2912
+ "epoch": 0.97,
2913
+ "learning_rate": 0.0002,
2914
+ "loss": 0.7745,
2915
+ "step": 3070
2916
+ },
2917
+ {
2918
+ "epoch": 0.98,
2919
+ "learning_rate": 0.0002,
2920
+ "loss": 0.7992,
2921
+ "step": 3080
2922
+ },
2923
+ {
2924
+ "epoch": 0.98,
2925
+ "learning_rate": 0.0002,
2926
+ "loss": 0.7836,
2927
+ "step": 3090
2928
+ },
2929
+ {
2930
+ "epoch": 0.98,
2931
+ "learning_rate": 0.0002,
2932
+ "loss": 0.7347,
2933
+ "step": 3100
2934
+ },
2935
+ {
2936
+ "epoch": 0.99,
2937
+ "learning_rate": 0.0002,
2938
+ "loss": 0.7213,
2939
+ "step": 3110
2940
+ },
2941
+ {
2942
+ "epoch": 0.99,
2943
+ "learning_rate": 0.0002,
2944
+ "loss": 0.7427,
2945
+ "step": 3120
2946
+ },
2947
+ {
2948
+ "epoch": 0.99,
2949
+ "learning_rate": 0.0002,
2950
+ "loss": 0.7799,
2951
+ "step": 3130
2952
+ },
2953
+ {
2954
+ "epoch": 0.99,
2955
+ "learning_rate": 0.0002,
2956
+ "loss": 0.825,
2957
+ "step": 3140
2958
+ },
2959
+ {
2960
+ "epoch": 1.0,
2961
+ "learning_rate": 0.0002,
2962
+ "loss": 0.7389,
2963
+ "step": 3150
2964
+ },
2965
+ {
2966
+ "epoch": 1.0,
2967
+ "learning_rate": 0.0002,
2968
+ "loss": 0.8275,
2969
+ "step": 3160
2970
+ },
2971
+ {
2972
+ "epoch": 1.0,
2973
+ "learning_rate": 0.0002,
2974
+ "loss": 0.7484,
2975
+ "step": 3170
2976
+ },
2977
+ {
2978
+ "epoch": 1.01,
2979
+ "learning_rate": 0.0002,
2980
+ "loss": 0.7419,
2981
+ "step": 3180
2982
+ },
2983
+ {
2984
+ "epoch": 1.01,
2985
+ "learning_rate": 0.0002,
2986
+ "loss": 0.6543,
2987
+ "step": 3190
2988
+ },
2989
+ {
2990
+ "epoch": 1.01,
2991
+ "learning_rate": 0.0002,
2992
+ "loss": 0.6952,
2993
+ "step": 3200
2994
+ },
2995
+ {
2996
+ "epoch": 1.01,
2997
+ "eval_loss": 0.7377473711967468,
2998
+ "eval_runtime": 111.1786,
2999
+ "eval_samples_per_second": 8.995,
3000
+ "eval_steps_per_second": 4.497,
3001
+ "step": 3200
3002
+ },
3003
+ {
3004
+ "epoch": 1.01,
3005
+ "mmlu_eval_accuracy": 0.48409598343583005,
3006
+ "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
3007
+ "mmlu_eval_accuracy_anatomy": 0.7142857142857143,
3008
+ "mmlu_eval_accuracy_astronomy": 0.4375,
3009
+ "mmlu_eval_accuracy_business_ethics": 0.45454545454545453,
3010
+ "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
3011
+ "mmlu_eval_accuracy_college_biology": 0.4375,
3012
+ "mmlu_eval_accuracy_college_chemistry": 0.25,
3013
+ "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
3014
+ "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
3015
+ "mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
3016
+ "mmlu_eval_accuracy_college_physics": 0.36363636363636365,
3017
+ "mmlu_eval_accuracy_computer_security": 0.36363636363636365,
3018
+ "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
3019
+ "mmlu_eval_accuracy_econometrics": 0.25,
3020
+ "mmlu_eval_accuracy_electrical_engineering": 0.25,
3021
+ "mmlu_eval_accuracy_elementary_mathematics": 0.43902439024390244,
3022
+ "mmlu_eval_accuracy_formal_logic": 0.14285714285714285,
3023
+ "mmlu_eval_accuracy_global_facts": 0.5,
3024
+ "mmlu_eval_accuracy_high_school_biology": 0.375,
3025
+ "mmlu_eval_accuracy_high_school_chemistry": 0.18181818181818182,
3026
+ "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
3027
+ "mmlu_eval_accuracy_high_school_european_history": 0.7222222222222222,
3028
+ "mmlu_eval_accuracy_high_school_geography": 0.9090909090909091,
3029
+ "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
3030
+ "mmlu_eval_accuracy_high_school_macroeconomics": 0.4883720930232558,
3031
+ "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
3032
+ "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
3033
+ "mmlu_eval_accuracy_high_school_physics": 0.058823529411764705,
3034
+ "mmlu_eval_accuracy_high_school_psychology": 0.85,
3035
+ "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
3036
+ "mmlu_eval_accuracy_high_school_us_history": 0.5454545454545454,
3037
+ "mmlu_eval_accuracy_high_school_world_history": 0.7692307692307693,
3038
+ "mmlu_eval_accuracy_human_aging": 0.7391304347826086,
3039
+ "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
3040
+ "mmlu_eval_accuracy_international_law": 0.7692307692307693,
3041
+ "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
3042
+ "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666,
3043
+ "mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
3044
+ "mmlu_eval_accuracy_management": 0.6363636363636364,
3045
+ "mmlu_eval_accuracy_marketing": 0.88,
3046
+ "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
3047
+ "mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
3048
+ "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
3049
+ "mmlu_eval_accuracy_moral_scenarios": 0.25,
3050
+ "mmlu_eval_accuracy_nutrition": 0.6666666666666666,
3051
+ "mmlu_eval_accuracy_philosophy": 0.5294117647058824,
3052
+ "mmlu_eval_accuracy_prehistory": 0.5142857142857142,
3053
+ "mmlu_eval_accuracy_professional_accounting": 0.41935483870967744,
3054
+ "mmlu_eval_accuracy_professional_law": 0.35294117647058826,
3055
+ "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935,
3056
+ "mmlu_eval_accuracy_professional_psychology": 0.4927536231884058,
3057
+ "mmlu_eval_accuracy_public_relations": 0.5,
3058
+ "mmlu_eval_accuracy_security_studies": 0.4444444444444444,
3059
+ "mmlu_eval_accuracy_sociology": 0.6363636363636364,
3060
+ "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
3061
+ "mmlu_eval_accuracy_virology": 0.5555555555555556,
3062
+ "mmlu_eval_accuracy_world_religions": 0.6842105263157895,
3063
+ "mmlu_loss": 1.4613330938486144,
3064
+ "step": 3200
3065
+ },
3066
+ {
3067
+ "epoch": 1.02,
3068
+ "learning_rate": 0.0002,
3069
+ "loss": 0.664,
3070
+ "step": 3210
3071
+ },
3072
+ {
3073
+ "epoch": 1.02,
3074
+ "learning_rate": 0.0002,
3075
+ "loss": 0.6673,
3076
+ "step": 3220
3077
+ },
3078
+ {
3079
+ "epoch": 1.02,
3080
+ "learning_rate": 0.0002,
3081
+ "loss": 0.703,
3082
+ "step": 3230
3083
+ },
3084
+ {
3085
+ "epoch": 1.03,
3086
+ "learning_rate": 0.0002,
3087
+ "loss": 0.763,
3088
+ "step": 3240
3089
+ },
3090
+ {
3091
+ "epoch": 1.03,
3092
+ "learning_rate": 0.0002,
3093
+ "loss": 0.6587,
3094
+ "step": 3250
3095
+ },
3096
+ {
3097
+ "epoch": 1.03,
3098
+ "learning_rate": 0.0002,
3099
+ "loss": 0.6725,
3100
+ "step": 3260
3101
+ },
3102
+ {
3103
+ "epoch": 1.04,
3104
+ "learning_rate": 0.0002,
3105
+ "loss": 0.7518,
3106
+ "step": 3270
3107
+ },
3108
+ {
3109
+ "epoch": 1.04,
3110
+ "learning_rate": 0.0002,
3111
+ "loss": 0.7182,
3112
+ "step": 3280
3113
+ },
3114
+ {
3115
+ "epoch": 1.04,
3116
+ "learning_rate": 0.0002,
3117
+ "loss": 0.6655,
3118
+ "step": 3290
3119
+ },
3120
+ {
3121
+ "epoch": 1.05,
3122
+ "learning_rate": 0.0002,
3123
+ "loss": 0.6333,
3124
+ "step": 3300
3125
+ },
3126
+ {
3127
+ "epoch": 1.05,
3128
+ "learning_rate": 0.0002,
3129
+ "loss": 0.6699,
3130
+ "step": 3310
3131
+ },
3132
+ {
3133
+ "epoch": 1.05,
3134
+ "learning_rate": 0.0002,
3135
+ "loss": 0.659,
3136
+ "step": 3320
3137
+ },
3138
+ {
3139
+ "epoch": 1.06,
3140
+ "learning_rate": 0.0002,
3141
+ "loss": 0.7138,
3142
+ "step": 3330
3143
+ },
3144
+ {
3145
+ "epoch": 1.06,
3146
+ "learning_rate": 0.0002,
3147
+ "loss": 0.7309,
3148
+ "step": 3340
3149
+ },
3150
+ {
3151
+ "epoch": 1.06,
3152
+ "learning_rate": 0.0002,
3153
+ "loss": 0.7251,
3154
+ "step": 3350
3155
+ },
3156
+ {
3157
+ "epoch": 1.06,
3158
+ "learning_rate": 0.0002,
3159
+ "loss": 0.6712,
3160
+ "step": 3360
3161
+ },
3162
+ {
3163
+ "epoch": 1.07,
3164
+ "learning_rate": 0.0002,
3165
+ "loss": 0.6527,
3166
+ "step": 3370
3167
+ },
3168
+ {
3169
+ "epoch": 1.07,
3170
+ "learning_rate": 0.0002,
3171
+ "loss": 0.7752,
3172
+ "step": 3380
3173
+ },
3174
+ {
3175
+ "epoch": 1.07,
3176
+ "learning_rate": 0.0002,
3177
+ "loss": 0.6896,
3178
+ "step": 3390
3179
+ },
3180
+ {
3181
+ "epoch": 1.08,
3182
+ "learning_rate": 0.0002,
3183
+ "loss": 0.7441,
3184
+ "step": 3400
3185
+ },
3186
+ {
3187
+ "epoch": 1.08,
3188
+ "eval_loss": 0.7388539910316467,
3189
+ "eval_runtime": 111.0879,
3190
+ "eval_samples_per_second": 9.002,
3191
+ "eval_steps_per_second": 4.501,
3192
+ "step": 3400
3193
+ },
3194
+ {
3195
+ "epoch": 1.08,
3196
+ "mmlu_eval_accuracy": 0.49153955280819217,
3197
+ "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
3198
+ "mmlu_eval_accuracy_anatomy": 0.6428571428571429,
3199
+ "mmlu_eval_accuracy_astronomy": 0.4375,
3200
+ "mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
3201
+ "mmlu_eval_accuracy_clinical_knowledge": 0.5172413793103449,
3202
+ "mmlu_eval_accuracy_college_biology": 0.375,
3203
+ "mmlu_eval_accuracy_college_chemistry": 0.25,
3204
+ "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
3205
+ "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
3206
+ "mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
3207
+ "mmlu_eval_accuracy_college_physics": 0.36363636363636365,
3208
+ "mmlu_eval_accuracy_computer_security": 0.36363636363636365,
3209
+ "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
3210
+ "mmlu_eval_accuracy_econometrics": 0.25,
3211
+ "mmlu_eval_accuracy_electrical_engineering": 0.3125,
3212
+ "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244,
3213
+ "mmlu_eval_accuracy_formal_logic": 0.14285714285714285,
3214
+ "mmlu_eval_accuracy_global_facts": 0.5,
3215
+ "mmlu_eval_accuracy_high_school_biology": 0.40625,
3216
+ "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727,
3217
+ "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
3218
+ "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666,
3219
+ "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636,
3220
+ "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
3221
+ "mmlu_eval_accuracy_high_school_macroeconomics": 0.4418604651162791,
3222
+ "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
3223
+ "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
3224
+ "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941,
3225
+ "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667,
3226
+ "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
3227
+ "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
3228
+ "mmlu_eval_accuracy_high_school_world_history": 0.7692307692307693,
3229
+ "mmlu_eval_accuracy_human_aging": 0.7391304347826086,
3230
+ "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
3231
+ "mmlu_eval_accuracy_international_law": 0.7692307692307693,
3232
+ "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
3233
+ "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666,
3234
+ "mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
3235
+ "mmlu_eval_accuracy_management": 0.6363636363636364,
3236
+ "mmlu_eval_accuracy_marketing": 0.88,
3237
+ "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
3238
+ "mmlu_eval_accuracy_miscellaneous": 0.6976744186046512,
3239
+ "mmlu_eval_accuracy_moral_disputes": 0.5,
3240
+ "mmlu_eval_accuracy_moral_scenarios": 0.24,
3241
+ "mmlu_eval_accuracy_nutrition": 0.6363636363636364,
3242
+ "mmlu_eval_accuracy_philosophy": 0.5294117647058824,
3243
+ "mmlu_eval_accuracy_prehistory": 0.4857142857142857,
3244
+ "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194,
3245
+ "mmlu_eval_accuracy_professional_law": 0.3235294117647059,
3246
+ "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935,
3247
+ "mmlu_eval_accuracy_professional_psychology": 0.5217391304347826,
3248
+ "mmlu_eval_accuracy_public_relations": 0.5833333333333334,
3249
+ "mmlu_eval_accuracy_security_studies": 0.4444444444444444,
3250
+ "mmlu_eval_accuracy_sociology": 0.5909090909090909,
3251
+ "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
3252
+ "mmlu_eval_accuracy_virology": 0.5555555555555556,
3253
+ "mmlu_eval_accuracy_world_religions": 0.7894736842105263,
3254
+ "mmlu_loss": 1.3683368821990707,
3255
+ "step": 3400
3256
  }
3257
  ],
3258
  "max_steps": 10000,
3259
  "num_train_epochs": 4,
3260
+ "total_flos": 1.0308432344825856e+18,
3261
  "trial_name": null,
3262
  "trial_params": null
3263
  }
{checkpoint-1200 β†’ checkpoint-3400}/training_args.bin RENAMED
File without changes